
PHYS 27 Scientific Computing Tutorial
Documentation

Release 1

James E. Hetrick

November 17, 2015

CONTENTS

1 Introduction to Scientific Computing 3
1.1 What is Scientific Computing . 3
1.2 The Scientific Computing Environment . 4
1.3 The OS and Unix . 8
1.4 The Scientific Software Stack . 12
1.5 Homework . 15

2 Installing your Scientific Computing Environment 17
2.1 Overview . 17
2.2 Prepare to Install . 18
2.3 Install VirtualBox . 21
2.4 Creating a Virtual Machine (VM) . 27
2.5 Defining the VM . 27
2.6 Turn on Virtualization in your BIOS? . 29
2.7 Configuring the VM . 31
2.8 Attach the Fedora Scientific ISO Disk . 37
2.9 Installing Fedora Scientific on your VM . 42
2.10 Booting Linux from the DVD . 42
2.11 Install to Your Hard Drive . 44
2.12 Create Root and User Accounts . 49
2.13 Boot Linux from Your Hard Drive . 52
2.14 Installing ” Guest Additions ” on your VM . 55
2.15 First Look at Linux . 55
2.16 Prepare for Guest Additions . 62
2.17 Upgrade your Kernel . 65
2.18 Configuring the Look-and-Feel . 72
2.19 Shared Folders . 72
2.20 Terminal/Shell Startup Configuration: the .bashrc file . 75
2.21 Examine .bashrc . 77
2.22 Fixing the Shared Folders . 80
2.23 Fonts and Colors . 83
2.24 Homework . 84

3 Basic Unix Skills 85
3.1 Moving Around in the Unix World . 85
3.2 Get Some Files . 85
3.3 The Unix File System . 85
3.4 The Directories . and .. 88
3.5 Pathnames . 89
3.6 Unix commands for files and directories . 90
3.7 Understanding pathnames . 93

i

3.8 Command Summary . 95
3.9 Copy, Move, Delete, and Examine Unix Files . 95
3.10 Video for this section . 95
3.11 Copying Files and Directories . 95
3.12 Moving and Renaming Files and Directories . 97
3.13 Removing Files and Directories . 100
3.14 Manipulating the contents of files . 101
3.15 Searching the contents of a file . 102
3.16 Sort the contents of a file . 104
3.17 Command Summary . 106
3.18 Controlling Data Flow . 107
3.19 The Pipe: | . 111
3.20 Command Summary . 113
3.21 Homework . 113

4 The Text Editor 115
4.1 The Text Editor . 115
4.2 Learning More About Emacs . 122
4.3 Intermediate Emacs . 137
4.4 Homework . 151

5 Scientific Visualization 153
5.1 Scientific Visualization . 153
5.2 More fun with Gnuplot . 168
5.3 3-D Plots with Gnuplot . 172
5.4 Plotting Data from a File . 178
5.5 Homework . 182

6 Data Analysis 183
6.1 User Defined Functions . 183
6.2 Fitting Functions to Data . 186
6.3 Fitting Data II . 189
6.4 Saving and Printing . 206
6.5 Homework . 210
6.6 A Worked Example: Theory meets Experiment . 210

7 Scientific Publication 219
7.1 Scientific Publications . 219
7.2 Latex Document Environments and Layout . 225
7.3 Error Messages from Latex . 245
7.4 Homework . 249

8 Intermediate LaTeX 253
8.1 LaTeX Error Messages . 253
8.2 Physics Department LaTeX Templates . 253

9 Scientific Drawings 255
9.1 Using Xfig for Drawings . 255
9.2 Starting Xfig . 259
9.3 Using Xfig . 260
9.4 Homework . 266

10 Remote Login and File Transfer 267
10.1 Remote Login and File Transfer . 267
10.2 Get Connected with SSH . 269

ii

10.3 SFTP and SCP . 272
10.4 Homework . 277

11 Symbolic Math and Numerical Linear Algebra 279
11.1 Symbolic Math and Numerical Linear Algebra . 279
11.2 Linear Algebra . 288
11.3 Homework . 295

iii

iv

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Contents:

CONTENTS 1

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO SCIENTIFIC COMPUTING

1.1 What is Scientific Computing

In this course we will learn some of the basic techiniques involved in using your computer to do scientific tasks. Since
our course has students with different experience using computers, some tasks will be familiar (I hope to start out that
way), and some will not. Along the way, I hope to add a few simple applications to your computer that will help you
be a better scientist, engineer, mathematician, or philosopher, astronomer, accountant, of whatever it is that you do.
The tools (software) and techniques that you use when doing science with your computer, are somewhat different than
those that you use when you use your computer for doing other, non-scientific, tasks. Let’s examine the differences
between these two ways of using your computer. That will help us outline the things that we will study in this course.

1.1.1 Non-scientific computing:

While you might do several of the following things in the course of some scientific project, these computer activities
would not be considered scientific computing

• Email

• Surfing the Internet

• Word Processing (non-scientific)

• Organizing and saving information in documents (files).

• Using a spreadsheet for bookeeping or tabulating things.

• Listening to / downloading / making music

• Editing movies

• Storing pictures

• Gaming

1.1.2 Scientific Computing

When using your computer for science, you do many different things. These might include

3

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Scientific Computing Activities

• Analyzing data, for example:
– doing statistics on data to compare with theories
– curve fitting to find mathematical relations in data

• Graphing data and mathematical functions: scientific visualization
• Doing algebra and calculus using the computer: symbolic mathematics
• Numerical calculations:

– computing numerical approximations to mathematical quantites like definate integrals (often
called numerical quadrature)

– linear algebra (vector and matrix computations)
– solving systems of linear equations
– solving non-linear equations
– and much more... (like computational fluid dynamics and lattice quantum chromodynamics)

• Scientific publication
• Scientific programming

There are lots more, not covered in this course, such as:

• Machine Learning

• Recording data from experiments

• Solving differential equations

• Computational Chemistry

• Computational Fluid Dynamaics

• Lattice Quantum Chromodynamics

It is these types of scientific tasks that we will cover in this course (except the last item). Many of these topics are the
subject of Ph.D. theses, and one could devote decades to learning how to do them well. Our goal is much simpler.

Our Goal in this course

To introduce you to some of these topics in order to get you started, and
To outfit your computer with the free tools needed to do so.

With just this, and a little diligence (i.e. webhunting for examples and tutorials) you’ll be surprised how much more
useful your computer can be.

First, we must setup a scientific computing environment on your computer. This simply means getting applications to
do these things.

1.2 The Scientific Computing Environment

By scientific computing environment , we mean the hardware, software, operating system, and customary tools with
which you will carry out the computations described in the previous page. Thus the environment can be quite extensive.
However for our purposes it is possible to set up a very nice scientific computing environment on a personal computer.

4 Chapter 1. Introduction to Scientific Computing

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

1.2.1 Scientific Computing Hardware

There is a wide range of machines upon which good science is done. These range from graphing calculators up to
multi-million dollar computing facilities which house the fastest and most advanced computers in the world.

Let’s first look at perhaps the simplest scientific computing environment, the handheld graphing calculator. If you
have a TI-8X (a Texas Instruments 82, 83, 84, or 86, etc.) calculator, you can do a significant number of the items
described under scientific computing tasks on the previous page. As an example, and particularly if you yourself have
one of these little pocket pals, visit

The Quick and Dirty TI Guide to see a list of these features. For example, my TI-86 does:

• Data visualization

• Curve fitting

• Linear algebra (solving several linear equations)

• Statistical computations

• Scientific programming

This is pretty good for something that fits in your pocket or hangs from your belt! Now, of course, you can get apps
for your phone that do much of this too.

High Performance Computing

At the other end, consider the Earth Simulator, one of the world’s fastest computers (back in 2005) located in Japan.

1.2. The Scientific Computing Environment 5

http://www.felderbooks.com/papers/ti.html
http://www.jamstec.go.jp/es/en/

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

6 Chapter 1. Introduction to Scientific Computing

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

This computer takes up an entire two story building that is a bit smaller than a football field. The bottom floor is
cooling, power, and cabling, and the top floor houses thousands of CPUs wired together to work as one single system.
As its name implies, the Earth Simulator was built for global climate modeling.

An example visualization of some of its output is shown below, an El Nino event:

1.2. The Scientific Computing Environment 7

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

1.3 The OS and Unix

The Operating System is the system of interacting programs which provides the interface between the ” appications ”
such as Word, Excel, Safari, iTunes, etc. (also programs) that the user wants to run, and the hardware of the computer,
as shown in the figure below. The hardware encompasses many different parts, of course. There are the user interface
devices: the mouse, keyboard, screen, and sometimes others, as well as the computer’s memory, CPU, data buses,
etc. We don’t need to worry about these complicated low level hardware devices, because the OS controls them in a
convenient way for us. For example, if you have an iPad or iPhone, you probably use the iOS OS. That OS has no
mouse interface, but does rely heavily on touch- screen input.

While there are many different OS’s, you are likely familiar with the top three: Microsoft‘s Windows , Apple‘s OSX ,
and possibly you have heard of Linux–a version of Unix .

1.3.1 Unix: The Scientific Operating System

THE operating system used at ALL supercomputing centers around the world is some variant of Unix . While there
are some recent experimental machines at certain supercomputing centers which are testing new ideas (like clusters of
NVidia Graphics/Gaming Cards– called GPUs), all high performance computer scientific systems run Unix. Why?

Advantages and Disadvantages of Unix From: ‘http://pangea.stanford
.edu/computerinfo/unix/overview/advantages.html‘_

8 Chapter 1. Introduction to Scientific Computing

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Advantages

• Full multitasking with protected memory. Multiple users can run

multiple programs, each at the same time without interfering with each other or crashing the system. + Very efficient
virtual memory; many programs can run with a modest amount of physical memory. + Access controls and security.
All users must be authenticated by a valid account and password to use the system at all. All files are owned by
particular accounts. The owner can decide whether others have read or write access to her files. + A rich set of small
commands and utilities that do specific tasks well – not cluttered up with lots of special options. Unix is a well- stocked
toolbox (with amazing gadgets), not a giant menu-driven Swiss Army Knife. + Ability to string commands and utilities
together in unlimited ways to accomplish even more complicated tasks – not limited to preconfigured combinations
or menus, as in personal computer systems. + A powerfully unified file system. Everything is a file: data, programs,
and all physical devices. Entire file system appears as a single large tree of nested directories, regardless of how many
different physical devices (disks) are included. + A lean kernel that does the basics for you but doesn’t get in the way
when you try to do the unusual. + Available on a very wide variety of machines - the most portable operating system.
+ **Optimized for program development and file manipulation, and thus

for the unusual and new circumstances that are the rule in scientific research.**

Disadvantages

• The traditional command line shell interface is designed for the

programmer, not the casual user. + Commands often have cryptic names and give very little response to tell the
user what they are doing. Much use of special keyboard characters - little typos have unexpected results. + To use
Unix well, you need to understand some of the main design features. Its power comes from knowing how to make
commands and programs interact with each other, not just from treating each as a fixed black box. + Richness of
utilities (over 400 standard ones) often overwhelms

novices. Documentation is short on examples and tutorials to help you figure out how to use the many
tools provided to accomplish various kinds of tasks.

So, What is Unix? The unix operating system was developed before both Windows and Mac OS for large computers
called “Mainframes” of the 1970s (i.e. ” back in the Day!). One interacted with these machines by “logging on”
via a text terminal, usually in another office, at a place like a bank or an airport where there were {it many people
working simultaneously}. These mainframes managed the simultaneous users–they were the original ” servers ”. Thus
the unix operating system, developed at Bell Laboratories, was originally designed to be ‘”multitasking”‘_ from the
beginning, something that personal computers only developed in the very late 1980s, after the appearance of the 80386
Intel processor (this is the precursor to the Pentium, the 80586). A cpu that can multi-task requires some advanced
architecture. It must be able to be interupted from it’s current task, save the state of that task, and start working on
someone else’s job. Also in the 1980s, unix workstations became quite popular among scientists and engineers, and a
number of tools were developed for to aid scientists in their work. Many different computer vendors such as IBM, Sun
Microsystems, Silicon Graphics, and Hewlett-Packard have developed their own forms of unix to run on their specific
hardware. These versions of unix go by the names: AIX, Solaris 1, Ultrix, and HPUX. The development history,
evolution, and relationship of these different versions is shown below.

1 I’ve always thought “Solaris” was an odd name for an operating system. It originates in the classic scifi novel “Solaris” by Stanislaw Lem,
where a sentient ocean covering a distant planet drives explorers mad who are sent to study it.

1.3. The OS and Unix 9

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

1.3.2 Unix running natively on a PC: = Linux

With the introduction of the 80386 CPU chip by Intel in the 1980s, PCs became able to multitask allowing the devel-
opment of a form of unix which would run on the PC architecture. This version was developed by Linus Torvalds, a
Finnish graduate student and the GNU Free Software Foundation developed by Richard Stallman. The name of this
version is Linux which is extremely popular, powerful, and FREE

For this course, I am recommending the Fedora Scientific Spin of Linux, running on a Virtual Machine on your
computer.

A screenshot is below.

10 Chapter 1. Introduction to Scientific Computing

http://www.linux.org
https://www.virtualbox.org/

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

1.3. The OS and Unix 11

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

1.4 The Scientific Software Stack

Our Scientific Computing Environment will consist of a number of programs which work together to allow us to carry
out the activities ‘Scientific Computing‘_ in Section 1. You might download them separately (I call this the “à la
carte” method), or as a large package. In addition, the list usually changes from year to year as new packages appear
that do the job better than what we used previously.

In some Environments–like at supercomputing centers–the stack includes several packages to do a specific task and
users can choose the one that suits their needs the best, or the one which they are most familiar with. Also, super-
computing centers typically have a variety of machines designed for specific tasks. You use one for high performance
number crunching, and another system for 3-D data visualization.

For this course I have chosen a standard set of applications/programs, which I list below. I have set the color of the
cells in this table to light red, like this: to show items that are Built-in to the OS or come with the installation.

12 Chapter 1. Introduction to Scientific Computing

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Fedora Scientific Windows PC Mac OSX
Unix Shell

Built-in:
• Bash

• Cygwin
• MSYS
• Git Bash

Built-in:
• Zsh

Text Editor
Built-in:

• Vim
• Emacs
• Eclipse
• SciTE

• Notepad++
• Others...

• Emacs via MacPorts
• Kate via MacPorts
• TextWrangler

Data Visualization
Built-in:

• Gnuplot
• MatPlotlib (in

Python)
• Mayavi

• Gnuplot
• Matlab (U. Pacific

Lic.)
• AVS ($)
• Others... ($)

• Gnuplot (via Mac-
Ports)

Scientific Publishing
*Built-in:

• LaTeX
• Kile Editor

• MikTex • MacTex

Drawing/CAD
Built-in:

• Xfig
• Inkscape
• Dia
• GIMP

• WinFig ($)
• Inkscape
• Dia
• GIMP
• SolidWorks ($)

• WinFig ($)
• Inkscape
• Dia
• GIMP

Remote Computing
Built-in:

• SSH
• SFTP
• SCP
• CURL

• Putty
• WinSCP

Built-in:
• SSH
• SFTP
• SCP

Math / Science
Built-in:

• Octave
• Python
• Sage
• R
• SciPy
• Root
• Units
• Maxima
• Mathematic (by

remote login at
U. Pacific)

• Mathematica ($) or
by remote login

• Python tools via Ana-
conda

• R
• Octave

• Mathematica ($) or
by remote login

• Python tools via Ana-
conda

• R
• Octave

Programming
Built-in:

• C/C++
• Fortran
• Java
• Python
• iPython
• PERL

Distributed Computing
• OpenMP

Shared Mem-
ory Computing

• OpenMPI Clus-
ter/Parallel Pro-
cessing

Libraries
• GSL GNU Sci-

entific Library
• FFTW Fast

Fourier Trans-
forms

• C/C++/Python via
Cygwin

• Python via Anaconda
• PERL via ActivePerl

• C/C++ via
gcc/MacPorts

• Python via Anaconda

1.4. The Scientific Software Stack 13

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Most of these tools are available a la carte i.e. as individual applications; you have to install each separately. While
that is certainly possible, it takes some effort and the individual applications are not setup to work together effectively.

If you use a PC, the ‘Cygwin‘_ application installs a suite of programs which emulate a Unix environment under the
Windows OS. However, it is not a real Unix operating system, only a set of Windows programs which make it possible
to build other unix programs and allow them to run under Windows.

If you use a Mac, the underlying OS actually IS Unix. This is why the first item, the Unix Shell, is built-in. You can
access it by opening Finder->Applications->Utilities, and clicking on Terminal . This opens a text window, with a
prompt (more on this in the next chapter), waiting for you to enter Unix commands.

Notice all the Built-in‘s in the first column under Fedora Linux/Scientific Spin! The simplest way to get all the pro-
grams needed for a robust scientific computing environment would be to get a real Unix system running the Scientific
Spin of the Fedora Linux OS. Otherwise, you have to install all of the programs individually (” à la carte ”). There are
a number of ways to get Linux on your computer.

• Erase your current Windows or Mac OS, Reformat your hard drive,

and install Fedora Linux as your operating system. Yes–pretty extreme. But if you are really committed...
Linux gets your whole computer; all your hard drive space, and when running all your memory and CPU
speed.

• Dual Boot This method installs the Linux OS on a separate

partition of your hard drive. Thus your Windows (or Mac) OS looses some hard drive space to the new
partition. When you turn on your computer, you are asked if you want to boot into Windows (or OSX), or
Linux. Once chosen, the OS gets all of the CPU and memory of the machine, and the whole of the disk
partition belonging to that OS.

• A Virtual Machine running Linux The Best of Both Worlds AT THE SAME TIME!

From the Wikipedia page on Virtual Machines (please read the introduction):

"a virtual machine (VM) is an emulation of a particular computer system"

The Virtual Machine software interfaces with your computer’s hardware at a low level, and then provides an environ-
ment which looks like a clean and blank computer. The software can create several such VM’s, each blank and ready
to be loaded with whatever software you like–AND they can all run at the same time. You configure the size of the
disk drive for each, the amount of memory, and several other configuration options. When you run the VM software,
you can start each of the virtual machines you have configured.

Thus on your Windows machine, you could have two VM’s running (each in a window of their own), one a complete
Linux computer, and the other running OSX. It is important to note that these running machines will take their re-
sources (CPU speed, memory, and disk) from the actual physical resources in your computer. Thus if your Windows
computer has 8 Gigabytes of memory, and you asign 4 Gb or memory to your “guest” Linux VM, then your “host”
Windows computer will have only 4 Gb for itself. However, unless you are pushing either of your computers to their
limit (such as gaming, streaming video, or doing significant numerical computation), then you won’t really notice the
fact that your physical computer is being shared by your native OS and your VM. Magic! There are several popular
Virtual Machine programs (see: this‘article‘_).

One of the most popular and FREE Virtual Machine applications is‘VirtualBox‘_ from Oracle. VirtualBox runs on
Windows, Macs, and Linux “hosts”. This means, you could even take the first option–erase your OS, install Linux as
the primary OS, then run Windows in a VM as a guest. However, most of you will be running either Windows on a
PC or OSX on a Mac. Thus, for this class, I am recommending that you install the appropriate VirtualBox package for
your computer, then you will configure a VM and install the Scientific Spin of Fedora Linux on it. You can then run
Linux and the scientific tools on your computer.

Whether you have a Mac or a PC won’t matter, since in either case you will be running Linux. VirtualBox even comes
with some cool features, like Seamless Mode which runs the Unix programs in individual windows so that they look
and feel just like other native programs. However, with this method, you have a real Unix kernel running, so the Unix
applications are full-featured. In the next chapter, we will assemble these tools and install them.

14 Chapter 1. Introduction to Scientific Computing

http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Kernel_%28operating_system%29

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

1.5 Homework

Homework 1 is here

1.5. Homework 15

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/hw1.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

16 Chapter 1. Introduction to Scientific Computing

CHAPTER

TWO

INSTALLING YOUR SCIENTIFIC COMPUTING ENVIRONMENT

2.1 Overview

After about 8 years of experience teaching this course with Cygwin as the primary environment for PC users and fink,
then Macports for Mac users, I have finally decided to move to a unified platform.

This has been made possible by the emergence of Virtualization Technology, which allows one to use the hardware
on a single machine and make several Virtual Machines. Each Virtual Machine (VM), while it is running, shares the
CPU, memory, hard drive, and other components of the real hardware.

Since there is a robust FREE Virtual Machine application, and a FREE Unix operating system which comes with all
the scientific tools (open-source, of course) we need, AND this system looks the same whether you have a PC or a
Mac, it’s like finding the Unified Field Theory that incorporates general relativity and quantum field theory. Well,
almost...

So, we have a simple set of steps ahead of us.

• First we install VirtualBox from Oracle

This is pretty easy; download the package and click Next a bunch of times as it installs.

• Then we create a Virtual Machine on which we will do our science

This is easy too, although you might have to go into your BIOS and make a couple adjustments if you want to
use the full power of your 64-bit computer.

This leaves you with a new-born baby (virtual) machine. No operating system, no files, nothing.

• Now we install Fedora Linux–Scientific Spin

Bang! We download the Fedora ISO, put the virtual DVD in the virtual DVD slot, and reboot. Answer a couple
questions, make root and user accounts, click Install, go have coffee. When you finish your cup-a-joe, you
reboot your VM and you now have a brand new computer asking you to login.

• Login and look around. Then Configure a few helpful items.

We will add the Guest Additions, programs which integrate your new VM with your “host” OS (i.e. your PC or
your Mac). This gives you “Seamless” integration of the two operating systems, as if all features of both were
built into one.

17

https://www.cygwin.com/
https://www.macports.org
http://en.wikipedia.org/wiki/Theory_of_everything

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

You will also

• Set up Shared Folders

so that you can easily access files across your two machines: your original computer that your Mom and Dad
bought you <–> and your new VM that you just built from stuff you downloaded from the Internet.

Ready?

2.2 Prepare to Install

Before we actually install our Scientific Computing Environment and start learning to use it, it’s very helpful to get an
overview of what we are going to do.

Here are the steps. You are going to do the first 2 steps now .

2.2.1 Find out what kind of hardware you have

32 or 64 bit

You will need to know if your computer is a Mac or a PC (DUH!), and if it is a 32- or 64-bit machine. Most
computers purchased since 2012 will be 64-bit, but you will want to check to be sure.

How much Memory?

Next you will need to know how much memory (usually between 2 and 16 Gigabytes) your computer has. You can
see both of these by doing the following.

On a PC, Click the Start globe at the lower left, on the menu that opens Right- Click Computer and select Properties.
That is: Start->(Right Click) Computer->Properties. This opens an info window, where you can see your data width
32- or 64-bit, and the amount of installed memory.

On a Mac: Click the Apple logo at the upper left. On the menu that drops down, select About this Mac . From the
info window, you can see how much memory you have. Unless you have a very old Mac, you have a 64-bit data bus.

18 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Finally, you need to know how much free diskspace you have. You won’t need a whole lot, but you should have at
least 10 Gb free. Linux will only use what it needs.

On a PC: Click Start->Computer. Look at your C: drive; You will see a bar graph showing the total size and amount
used. Below this, the amount of free space is shown, 125 Gb free out of 297 Gb, in the case displayed below.

On a Mac: Click Apple->About this Mac. Next select More Info.... On the window that pops up, select Storage. Find
your Macintosh HD, and notice the amount of free disk space above the bar graph.

Again, here is the list of the information you need. Write down what you find.

• Data bus width: 32- or 64-bit?

• Amount of Memory

• Disk size and free space

2.2. Prepare to Install 19

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

2.2.2 Downloading the Appropriate Software Items

• You will need to download the VirtualBox Installer appropriate for your computer

Visit Oracle: Download VirtualBox , select the appropriate one, and save it to your computer.

– If you have a PC, Download: VirtualBox for Windows Hosts (click the x86/amd64 link)

– If you have a Mac, Download: VirtualBox for OS X Hosts (click the x86/amd64 link)

• Next download The Fedora Linux - Scientific ISO file This is a large file (about 3.5 Gb), and thus it will take
some time to download.

Note: If you know you have an old 32-bit PC, or are comfortable with Torrent Downloads use one of the other links

But for most people, you will want to get the 64-bit PC Direct Download file from:
https://labs.fedoraproject.org/scientific/download/index.html

If you have trouble, let me know. I want you to get the latest version, but I can put a copy on the Physics Department
server which may download faster for you.

Again, see me if you have trouble getting one of these. I can burn you a copy.

That’s it! All the scientific software you need is Built-in to Fedora Scientific Linux.

Do these steps now!

Before your go to the next section: Install..., you need to have done the steps above:
• Check and record your computer hardware info
• Download VirtualBox ,
• Download https://labs.fedoraproject.org/scientific/download/index.html

2.2.3 Next Steps

After these first 2 steps, you will carry out the following steps. Read through these so that you understand what is
ahead.

1. Install VirtualBox

2. Create and configure a virtual machine (VM)

on which you will install Linux.

3. Start the VM with the Fedora ISO in its virtual DVD drive.

4. Go through the Linux Installation proceedure on the VM.

You will do some minor configuration steps, such as selecting your language preference, then you will choose a
root password and make a standard user account for yourself.

20 Chapter 2. Installing your Scientific Computing Environment

https://www.virtualbox.org/wiki/Downloads
https://labs.fedoraproject.org/scientific/download/index.html
https://www.virtualbox.org/wiki/Downloads
https://labs.fedoraproject.org/scientific/download/index.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

5. Eject the Fedora Installation ISO file,

and reboot the VM**. This will start your fresh new Linux VM. You can login to your user account and look
around.

6. Add “Guest Addition” features to your Linux VM.

By adding the included ” Guest Additions ” to your Linux VM, you can have features such as Seamless Mode
(your Linux windows appear on your Windows or Mac desktop just like other programs) and more. Other
features include:

• Shared Folders and Clipboard, between host and guest machines

• “Seamless” Desktop integration with the Host OS

7. Reboot with Guest Additions activated

8. Configure the Unix behavior and Desktop “Look-and-Feel” to your liking.

9. Start using your Scientific Computing system!

2.3 Install VirtualBox

Having gathered the information about your computer in the last section Find out what kind of hardware you have,
and downloaded the software files software, we are now ready to start installing our scientific system.

To begin, locate the VirtualBox Installer you downloaded, and Click (maybe twice?) to start it.

This will start the installer.

2.3. Install VirtualBox 21

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Naturally, you will click Next.

Then Next again, to accept the installation of the standard package

22 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Here you can choose which things you like: an Icon on your desktop, an Icon on your launch bar, or not.

Note: It is important to leave “Register file associations” CHECKED.

2.3. Install VirtualBox 23

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

The installation will temporarily disconnect your network connection, but will then reconnect it. Click Yes.

Now we are ready to install. So click Install !

24 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

VirtualBox will show you the status of the installations.

It MAY pop-up a screen like this asking if you Trust Content from Oracle (perhaps a few times). If so, click Install
and continue. If you want to, you can check the Always trust software from “Oracle Corporation” box.

2.3. Install VirtualBox 25

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Success! Now click Finish. VirtualBox will launch, and you should see the screen below.

26 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Warning: **If you do not ** this screen, somthing went wrong. Probably it’s a little thing. Contact Prof. Hetrick.
If you need to do so, please include as much information about the error as you can. Screenshots would be
appropriate!

Next we will create a VM and install Fedora Scientific Linux on it.

2.4 Creating a Virtual Machine (VM)

2.4.1 Video for this section

The video for this section is here (YouTube).

2.5 Defining the VM

Now you are ready to create a virtual clone of your computer hardware and install a Linux Operating System on the
clone. Pretty trippy if you think about it.

• First, start VirtualBox. You should see this window.

2.4. Creating a Virtual Machine (VM) 27

https://www.youtube.com/watch?v=G81JQ4n2B-s

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

• Click the ” New” button.

28 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

This brings up the VM building window:

You can see

• a text box for you to give a name to your VM (say, “Fedora Scientific”)

• a dropdown menu for the “Type” of OS: Windows, Linux, Mac, etc.

• a dropdown menu for the “Version” of the OS: Windows XP, Win7, Fedora Linux, Ubuntu Linux, etc.

Before proceeding, let’s check something first.

Remember your Preperations Find out what kind of hardware you have? You found if you have a 32-bit or 64-bit
computer.

If you have a 32-bit machine, then you can skip the following BIOS alterations, and just jump to here: config-the-vm.

However, if you have a 64-bit machine, you will want to take full advantage of that big fat data bus. Check the
following.

2.6 Turn on Virtualization in your BIOS?

• Click on ” Type”, and select ” Linux“

• Click on the ” Version” menu, and look at the options.

• Do you see only ** 32 bit ** choices, i.e. no 64 bit choices? Like this:

2.6. Turn on Virtualization in your BIOS? 29

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

If so, then your computer has ” Hardware Virtualization ” turned OFF. You can turn it ON (or try to, at least), by doing
the following:

• Reboot your computer

• Halt the boot process and enter your BIOS system

This is usually done by hitting an F-Key during the boot process (Often your system says somthing like “Hit
F10 to enter BIOS options” during the boot process. If so, hit the key mentioned (F10, F2, ESC, etc.), or search
the internet for “your computer manufacturer” “model” and “BIOS Key”, on the internet.

• Enter the BIOS system, choose the “Security” tab, look through the options and find:

– VT/x (or VT-x, or Virtualization Technology)

– VT/d (or VT-d, or Virtualization Technology Directed I/O)

• “Enable” VT-x, and VT-d if it is there.. Below is a screen shot of my BIOS page–yours may look different, but
should be similar. In particular, you should be able to find the VT-x and VT-d items. If you can only find VT-x,
that is fine–turn that ON (Enabled).

30 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

• Once these things are enabled, Reboot.

• Start VirtualBox again.

If you have trouble with this, let me know and I’ll try to help. However, if we can’t get Hardware Virtualization
enabled, you can still proceed and install a 32-bit version of Fedora Scientific (and probably won’t even notice the
difference).

2.7 Configuring the VM

Now, with Hardware Virtualization enabled, you should see both 32 bit and 64 bit OS versions versions like this:

2.7. Configuring the VM 31

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Having selected “Linux” as the Type of OS, Select “Fedora (64 bit) or (32 bit) depending on your data bus width.
And give your VM a name like: Fedora Scientific.

Click Next.

You will get this screen, where you will assign the memory for your VM.

32 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

I typically assign Half of the memory of my machine to the VM. So, if your computer has 4 Gb or memory (also
called RAM–Random Access Memory), I would assign 2 Gb to my VM. The window will show you the minimum
recommended memory. You will want more than that, but not so much that you are moving the slider into the RED
region.

This memory will only be assigned to the VM when it is running, when presumably you will want it! As a minimum
, don’t use less than 1 Gb. Note that you can type a number in the box too–you don’t have to use the slider or Up/Dn
arrow buttons.

If you have trouble deciding on the amount, let me know–but you might as well try half of your physical memory for
starters.

Click Next when you have set the memory size.

Now, you will setup the virtual disk system for the VM.

Select “Create a virtual hard drive now”, then click Next.

Click the default type: “VDI VirtualBox Disk Image”. Then click Next.

2.7. Configuring the VM 33

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

You will want one that is ” Dynamically Allocated”. This means that even though you set a maximum disk size of,
say 40 Gb (which you will do shortly), you will not instantly see this much less free space on your hard drive. The
VM will only use the amount of diskspace required to hold the files you create on your VM.

So, check “Dynamically Allocated”, an click Next.

34 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Now you have to choose the maximum size of the disk for your VM. You could go a small as a couple Gb’s, however
I would suggest between 10-50 Gb for your Fedora Scientific VM.

You will be able to change this later if you wish–so you can add more space if you start to use your Fedora Scientific
VM for a lot of your scientific work (I hope that is the case!).

Choose your disk size, and click Create.

2.7. Configuring the VM 35

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

You’ve just configured your Fedora Linux Virtual Machine ! You should be back in the main VirtualBox application
window, but now there will be one VM icon on the left panel, with the name of your VM. I will assume you named it
“Fedora Scientific”.

36 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Don’t Start it Yet!

Before you start your new VM, you have put the Fedora Scientific DVD (the .iso file) into the DVD drive.

2.8 Attach the Fedora Scientific ISO Disk

Your new VM is ready to start, but it has no OS on its hard drive (like your computer does). So if you were to start it,
it would just turn on and wait.

When you build a new computer from scratch, or install a new OS on a computer, typically you buy (or download) a
DVD (or ISO file) with the new OS on it, load this in the DVD tray, and start the machine. When it boots, it will first
look in the DVD/CD tray to see if there is a bootable disk there. If so, it boots an OS from that disk. Once that OS is
loaded into memory, the computer can carry out instructions and has basic functionality–often just enough to read the
new OS from the DVD and write it to the hard drive.

That’s what we’re going to do here. Except that the OS we want is in the form of the “Fedora Scientific Linux” ISO
file that we downloaded in the last section software. ISO files are disk images of a CD or DVD. We are going to put
this file in a Virtual DVD Drive (How cool is that!).

To do this, make sure that your Fedora Scientific VM is highlighted in the left panel. It should be, since it is probably
the only one there.

Click “Settings” on the top panel.

2.8. Attach the Fedora Scientific ISO Disk 37

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

You will see this window.

38 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Click “Storage” on the left menu, to bring this window forward.

Click the “Empty” CD icon under “Controller: IDE”.

2.8. Attach the Fedora Scientific ISO Disk 39

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Then, with Empty highlighted, click the CD icon beside the line that says: “CD/DVD Drive: Secondary IDE Master”.
This drops a menu box like this:

Select “Choose a virtual CD/DVD disk file...

Browse your computer to find the Fedora-Live-Scientific-KDE...-20.iso file that you downloaded dur-
ing your Preparations in the last section software.

40 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Once you have selected this file, you should see its properties in the Information section of that window, below the
CD/DVD Drive. Also check “Live CD/DVD”.

At this point, you have virtually loaded a virtual DVD into your Virtual Machine’s virtual DVD drive. Thus when you
turn on the machine, it will boot the installation sequence from this virtual Fedora DVD file.

Click ” OK” and return to the main VirtualBox window.

You are now ready to power up your Virtual Machine for the first time

Go ahead and click the ” Start” -> button and move on to the next section.

2.8. Attach the Fedora Scientific ISO Disk 41

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

2.9 Installing Fedora Scientific on your VM

2.9.1 Video for this Section

Video for this section is here.

The first part of the video is the VirtualBox VM creation. Fedora Scientific Linux installation is in the second half of
the video.

2.10 Booting Linux from the DVD

If you haven’t done so,

• Start VirtualBox.

• Highlight your Fedora Scientific VM.

• and press the Start (->) button at the top of the window.

You may have already done this while reading the previous section, and your machine is starting up.

Either way, you should see the display of your new VM starting up, and after a couple spits, it should look like the
following.

42 Chapter 2. Installing your Scientific Computing Environment

https://www.youtube.com/watch?v=G81JQ4n2B-s

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

just as it would if you had loaded the Fedora Scientific Install DVD in the DVD drive of a new desktop computer.

You can do nothing for 10 seconds, or you can hit the ENTER button. This will start the Linux boot process and the
screen switches to this one, with a blue line building across the bottom of the screen.

You can also click the little blue [x] on the info bubble-bars that popped up at the top of the window.

In a short time, the bottom icons will all be there and the file viewer is there.

An icon saying ” Install to Hard Drive” should be there.

2.10. Booting Linux from the DVD 43

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

2.11 Install to Your Hard Drive

To start the Fedora Scientific Installation onto the virtual hard drive of your VM, double click that icon.

This will start the Installation sequence and you will be prompted for a few configuration items, like your choice of
Language. I chose US English, but you suit yourself.

44 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Next you get this window:

2.11. Install to Your Hard Drive 45

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Chances are good that everything is ready except the “SYSTEM”. The installer would like your permission to partition
the virtual disk.

Click SYSTEM and you should see this window.

46 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

The “ATA VBOX HARDDISK” is probably not highlighted (as it is here). Click Once on the hard drive icon. It
should turn teal (like below) and a little check mark should appear.

Once yours looks like mine here, Click “Done”. A window should pop up that looks like this:

Keep these defaults and Click Continue.

Then you should have everything ready to go (i.e. no ! Error Messages), and your screen will look like this.

2.11. Install to Your Hard Drive 47

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Click “Begin Installation”, in the lower right, to...begin the installation of Fedora Scientific onto your VM’s hard
drive .

The status bar at the bottom will begin to fill rightward,

and the installer will ask you to do a couple things while it copies and unpacks files.

48 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

2.12 Create Root and User Accounts

The installer will ask you to set up two accounts and give them passwords.

One is the Root account. This is the system adminstrator account and has complete access to the system. Root can
open any file, and more importantly delete any file. So be careful! You will use this account occasionally to make
changes to things on your Fedora system. Click Done to set the Password.

The other is the User account you will use the rest of the time (i.e. your normal account). I find that it is easiest to
make the username of this account the same as your PacificNET ID.

Warning: Save these passwords somewhere, or better, use ones that you will remember. If you forget your User
pasword, you can use to Root account to reset it. But if you forget the Root password, you may have to reinstall
everything.

Click Done , like before, to create the account and set the Password.

This should bring you back to the main Installation window, with the status bar increasing, followed by post-installation
steps.

Finally,

you will see the “Success!” banner. Congratulations. If you see this, you most likely have a working installation of
Fedora Scientific Linux.

Click Quit.

This will end the Installation to Disk process, and bring you back to the Fedora Desktop .

2.12. Create Root and User Accounts 49

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Next, power down the VM by clicking the Fedora “Start” (f) button, in the lower left corner. Then Click “Leave”,
followed by “Shutdown”.

50 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

The VM will ask you one more time. Click “Turn of Computer“

After a couple of system flickers, the VM display should turn black and close. Your Oracle VirtualBox window should
be back to looking like this, meaning the VM is OFF (and waiting to be awakened again).

2.12. Create Root and User Accounts 51

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

2.13 Boot Linux from Your Hard Drive

Since we still have the Fedora-Live-Scientific-...-KDE.iso file loaded in the virtural DVD tray of the
VM, if we were to power up the machine again, it would boot from DVD and present us with the “Install to Hard
Drive” icon again.

We don’t want that. So we need to Eject the ISO file from the DVD drive. But the VM has no eject button...

To eject the DVD file, (or in the language of Unix: unmount the ISO file), do the following.

• In the VirtualBox window, Click the Blue icon on the left for your “Fedora Scientific” VM,

• then Click the “Settings” button at the top.

• Click “Storage” on the left, and then under Controller: IDE, Click the Fedora-Live-Scientific...
DVD icon to highlight it (so it turns blue),

• Then, on the far right, Click the DVD icon to the right of “CD/DVD Drive: IDE Secondary Master”.

• This drops a menu: Select “Remove disk from virtual drive“

• The DVD icon below Controller: IDE (in the center of the window) should say: “Empty”.

• Then Click “OK” at the bottom.

Your VM is now ready to boot from its own hard drive, without the installation DVD.

Go ahead and “Start” (->) your Fedora Scientific VM again. This time, you will briefly see a new screen:

52 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Showing two “kernel” options which you can boot. One is the main Linux system, and the second is a bare-bones
Rescue system in case something went wrong. Within about 3 seconds, the main Linux kernel boots and you are
presented with a login screen.

2.13. Boot Linux from Your Hard Drive 53

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Login with the Standard Username (not Root) in the top box, and the password in the lower box, which you created
earlier.

Shazzam!

Your new Fedora Scientific system should have booted, and you are looking at the Fedora/KDE Desktop.

Fedora is the version of Linux we are running. Others are: Ubuntu , Debian , etc., and KDE is the version of the
Desktop environment. The other popular Linux Desktop is Gnome .

Notice the two icons:

54 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

just like you would see on those ” Other ” common OS’s. From here you can probably start to intuit your way around.
You have

• a Home and Trash

• a Start Orb with an f at the lower left.

• a Panel along the bottom of the window, with various icons.

Not unlike a Windows or Mac desktop, eh? But without all those 3rd party add-ons. No “1-month free trial of
McAffrey”, or other things fighting for your attention.

Go ahead and look around. It’s your new Linux system.

2.14 Installing ” Guest Additions ” on your VM

2.14.1 Video for this Section

Video for this section is here.

If you haven’t done so,

• Start VirtualBox.

• Highlight your Fedora Scientific VM.

• and press the Start (->) button at the top of the window.

2.15 First Look at Linux

Once you have the login page for Fedora, login as the Standard User. You should be looking at your Desktop , with
Home and Trash icons.

In the previous section, you installed Fedora Scientific Linux onto a VM.

At the end of that section, you were left with the Desktop and encouraged to “look around”.

Let’s start with your “Home” folder.

Double Click the Home icon.

This opens the Dolphin File Viewer . Dolphin is the name for the File Viewer/Navigator system of the KDE desktop.
It’s similar to Window’s Explorer or the Mac’s Finder .

2.14. Installing ” Guest Additions ” on your VM 55

https://www.youtube.com/watch?v=HIq_O3bGugA
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch2/ch2sec5.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

You can see the Sub-folders under your “Home” folder. They too should look familiar–Documents, Downloads,
Pictures, Music,... In fact, so far this could just be a sexy blue Windows machine.

The real power of Unix however, is going to shine when you get used to using the Unix Terminal and its simple
command line for controlling your computer. This is the first thing a hacker wants.

Close your Dolphin file explorer, by clicking the (x) in the upper right corner on the window.

I don’t use the GUI File Explorer much with Linux; I find it is much easier to use the text-based “Terminal”, which
I will describe below. So, I recommend that you Close the Home/Trash Window by finding and Clicking on the X
that pops out to the right of the window:

56 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Next: Click on the “Kickoff Application Launcher“

or “Start Orb“—as I called it earlier. It’s the little (f) button in the lower left. This brings up a multi-tabbed menu
interface.

2.15. First Look at Linux 57

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

The Default tab is “Favorites” with some common Applications like a Web Browser and Mail Client . Later I’ll
show you how to configure your favorites here.

Now click on the “Applications” tab. You can see a large number of Categories: Multimedia, Office, Science
and Math, etc. Feel free to explore—this list has all the programs and applications that came free with your Fedora
Scientific installation.

In particular, click the “System” Category, and scroll down to “Terminal / Konsole”. There are a couple
different Terminal programs—I’m going to use the “Konsole” one (the name is in small print underneath the icon.

58 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Before you Click to start it (or find it again if you already did), Right-Click on the “Terminal” icon to open the
menu below.

2.15. First Look at Linux 59

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

From this menu, Click “Add to Panel”.

Notice that you now have a little TV/Display Terminal icon on the lower right of the “Panel”, which the bar that
stretches across the bottom of the display.

You now have a handy “Launcher” for a Terminal . Click the new little Terminal now. You will see a black window
pop up, and some text ending with a “$”.

60 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

That’s what I’m talkin’ about!

Welcome to the Heart of the Machine, my young dudes.

With this Command Line Prompt and the Root password, you can do anything on this machine.

Let’s issue our first Unix command. Type:

ls

in the new Terminal window, followed by ENTER.

This is the List (ls) command, and the Terminal will show you the contents of your “Home” Directory (or Folder).

Folders (or “Directories” as folders are called in Unix) are shown in Blue . If you still have your ” Home ”
folder open in the Dolphin File Explorer, compare the two. The ” ls” listing should show the same directories
(or folders) as you see with the graphical Dolphin explorer. Move the windows around and confirm this. Com-
pare the output above, from the Terminal and ls, to the files below, from the Dolphin File Explorer window.
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/rev2014/filelist.html .. image:: imgs/finst28crp.PNG

2.15. First Look at Linux 61

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/rev2014/filelist.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

2.16 Prepare for Guest Additions

We’ll come back to learning all about the Terminal (and more importantly the “Shell” sometimes). For now however,
we want to use the Terminal to do some administration of the system and to install the “Guest Additions”. Guest
Additions are a number of auxiliary programs and features which you add to your Linux/Desktop/VirtualBox system
that make life easier.

To do this, Locate or Start a Terminal window. If the one you had open from the above explorations is still open,
use it.

At the prompt (which means, Click the Terminal and enter the following commands after the $ sign), type:

su

Followed by ENTER. This is the Set User or Super User command (su). With no username after it, su changes the
user to the Root (Super) user.

The terminal will respond like this: Password:

asking for the Root password.

Enter the password for the Root account that you created earlier.

(You did remember it, right?)

Once you have entered the password—and notice that the terminal does not echo ********** as you type the
password–the prompt will return. It looks almost the same except that the first word is now root instead of the
standard user, and the last character is a # instead of a $.

You are now root .

If you are a fan of the movie “Guardians of the Galaxy”, you may like to say I am Root, over and over.

As root , you do have superpowers. You can delete the entire file system with one command. So be careful. We are
not going to do much.

62 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

2.16.1 Update your system

First, you really should update your system. This will take about 15-30 minutes, so do it when you can read a book
while the update happens.

We will use yum (Yellowdog Updater, Modified). Yum allows you to very easily install and maintain packages on
you linux system. There are many variants of Linux: Fedora, Ubuntu, Suse, Debian, etc. Yum is the updater used by
Fedora Linux, while apt-get is the one used by Ubuntu, just in case you run across there terms out there somewhere.

In your Root Terminal window, type:

yum update

at the # prompt. Then hit ENTER.

Your terminal will show some text, something like this:

root@localhost jhetrick]# yum update
Loaded plugins: langpacks, refresh-packagekit
updates/20/x86_64/metalink | 15 kB 00:00:00

Then a huge number of Packages to be updates, like this:

Resolving Dependencies
--> Running transaction check
---> Package 4ti2.x86_64 0:1.6-1.fc20 will be updated
---> Package 4ti2.x86_64 0:1.6.2-3.fc20 will be an update
---> Package 4ti2-libs.x86_64 0:1.6-1.fc20 will be updated
---> Package 4ti2-libs.x86_64 0:1.6.2-3.fc20 will be an update
---> Package Cython.x86_64 0:0.19-2.fc20 will be updated
---> Package Cython.x86_64 0:0.21.1-1.fc20 will be an update
---> Package GitPython.noarch 0:0.3.2-0.5.RC1.fc20 will be updated
---> Package GitPython.noarch 0:0.3.2-0.6.RC1.fc20 will be an update
---> Package GraphicsMagick.x86_64 0:1.3.18-4.fc20 will be obsoleted
---> Package GraphicsMagick.x86_64 0:1.3.20-3.fc20 will be obsoleting
---> Package GraphicsMagick-c++.x86_64 0:1.3.18-4.fc20 will be updated
---> Package GraphicsMagick-c++.x86_64 0:1.3.20-3.fc20 will be an update
---> Package GraphicsMagick-doc.noarch 0:1.3.20-3.fc20 will be obsoleting
---> Package ImageMagick.x86_64 0:6.8.6.3-3.fc20 will be updated
---> Package ImageMagick.x86_64 0:6.8.6.3-4.fc20 will be an update
---> Package ImageMagick-c++.x86_64 0:6.8.6.3-3.fc20 will be updated
---> Package ImageMagick-c++.x86_64 0:6.8.6.3-4.fc20 will be an update
---> Package ImageMagick-libs.x86_64 0:6.8.6.3-3.fc20 will be updated
...

Don’t be surprized if it’s hundreds (even in the 1000s). After the packages stop streaming past the window, the system
will pause with a message like this:

2.16. Prepare for Guest Additions 63

http://en.wikipedia.org/wiki/Yellowdog_Updater,_Modified

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Transaction Summary
===
Install 20 Packages (+ 147 Dependent packages)
Upgrade 514 Packages (+1047 Dependent packages)

Total download size: 2.6 G
Is this ok [y/d/N]:

Yeah; I just did this on my system and it says “Total download size: 2.6 G”. Don’t worry—It won’t take
up that much space on your disk. Most of the packages will replace currently installed packages. Then it will erase
the downloaded files.

The system is waiting for you to type: y to tell it to begin the Update process. So,

type y.

Go get some coffee, or your favorite beverage.

Yum will start downloading the packages.

Downloading packages:
updates/20/x86_64/prestodelta | 3.0 MB 00:00:19
Delta RPMs reduced 2.1 G of updates to 448 M (79% saved)
(1/1728): GitPython-0.3.2-0.5.RC1.fc20_0.3.2-0.6.RC1.fc20.noarch.drpm | 41 kB 00:00:00
(2/1728): 4ti2-1.6-1.fc20_1.6.2-3.fc20.x86_64.drpm | 20 kB 00:00:01
(3/1728): GraphicsMagick-c++-1.3.18-4.fc20_1.3.20-3.fc20.x86_64.drpm | 34 kB 00:00:01
(4/1728): ImageMagick-6.8.6.3-3.fc20_6.8.6.3-4.fc20.x86_64.drpm | 44 kB 00:00:00
(5/1728): ImageMagick-c++-6.8.6.3-3.fc20_6.8.6.3-4.fc20.x86_64.drpm | 29 kB 00:00:00
(6/1728): ImageMagick-perl-6.8.6.3-3.fc20_6.8.6.3-4.fc20.x86_64.drpm | 55 kB 00:00:00
...

You can see—I have 1728 packages to install! This will take about half an hour.

Finally, my terminal says, simply:

Complete!
[root@localhost jhetrick]#

The update is done, and you can move on to Upgrading the Kernel.

Warning: If you run into problems of disk space, you can do a simpler update, of just your kernel. To do this,
type:

• yum clean all (to get rid of any old files taking up space)
• yum update kernel
• then, shut down/restart your VM

64 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

2.17 Upgrade your Kernel

Now, we are going to upgrade the Linux kernel to make it ready for the Guest Additions. To do so, type:

yum install dkms kernel-devel kernel-headers

and hit ENTER.

Some stuff will happen. Resulting in a line that says:

Is this ok [y/d/N]:

Yum is the Fedora software updater–it is waiting for you to give it the OK to install the things we typed above.

Hit y (ENTER).

Yum will do some more stuff (getting the software, checking dependencies, installing, updating, etc. Finally, you will
see the word Complete!, which means that the kernel upgrade worked.

Time to reboot the machine.

Close all your open windows by Clicking on the (x)‘s on the upper right corner of the windows. Then Click “Start”
(f) , and Leave -> Shutdown.

Let the machine power down.

2.17.1 Run the Guest Additions Script

If you haven’t done so,

• Start VirtualBox.

• Highlight your Fedora Scientific VM.

• and press the Start (->) button at the top to launch your Fedora VM

• Login as the Standard User

Open a Terminal window by Clicking on the Terminal* icon on the Panel.

2.17. Upgrade your Kernel 65

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

At the prompt in the terminal, become root by typing:

su

followed by the root password.

Now, At the very top of your VM window, Click “Devices”, and select: Insert Guest Additions CD
image.

In a few seconds, a Message Window will pop up.

66 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Click Open with File Manager

This will open a Dolphin File Explorer, and you can see the files contained on the Guest Addition CD .

If you missed the pop-up window, don't worry! (It seems to disappear after a few seconds).

Just **click** on the (f) "Start" (called the Kickoff Launcher) button,
then click the **Computer Tab** on the lower left of the screen. Find the CD name at the bottom
``VBOXADDITIONS_4.3.x_nnnnnnn``. **Click on that.

.. image:: imgs/guestAddsComputerFileMngr.jpg

This will open the Dolphin File Explorer also.

For some strange reason, the system will only link the VBOXADDITIONS.. CD to the system when you open it in
the Dolphin file explorer. So we have to do the step above.

Once the Dolphin file browser has opened—which links the CD to the appropriate location (as we’ll see next)—you
can close the Dolphin explorer, by clicking on the (x) on its upper right.

2.17. Upgrade your Kernel 67

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Now, return your attention to the Terminal window you opened. The one that has the root prompt: ‘‘[root@localhost
jhetrick]# ‘‘.

Change directories to the location of the VBOXADDITIONS CD, but typing:

cd /run/media/jhetrick (substitute YOURUSERNAME for jhetrick)

then do a listing of the directory, by typing ls (ell ess).

You should see the CD there as a subdirectory:

[root@localhost jhetric]# ls
VBOXADDTITIONS_4.3.16_95972

Type:

cd V(TAB)

i.e. type cd V, then (without hitting ENTER) hit the TAB key. This will *auto-complete the rest of the file name, and
save you having to type all the characters.

Now type:

./VBoxLinuxAdditions.run

The shell will reply with:

[root@localhost VBOXADDITIONS_4.3.16_95972]# ./VBoxLinuxAdditions.run

Verifying archive integrity... All good.
Uncompressing VirtualBox 4.3.16 Guest Additions for Linux............
VirtualBox Guest Additions installer
Removing installed version 4.3.16 of VirtualBox Guest Additions...
Copying additional installer modules ...
Installing additional modules ...
Removing existing VirtualBox DKMS kernel modules [OK]
Removing existing VirtualBox non-DKMS kernel modules [OK]
Building the VirtualBox Guest Additions kernel modules
Building the main Guest Additions module [OK]
Building the shared folder support module [OK]
Building the OpenGL support module [FAILED]
(Look at /var/log/vboxadd-install.log to find out what went wrong)

68 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Doing non-kernel setup of the Guest Additions [OK]
Installing the Window System drivers
Installing X.Org Server 1.16 modules [OK]
Setting up the Window System to use the Guest Additions [OK]
You may need to restart the hal service and the Window System (or just restart
the guest system) to enable the Guest Additions.

Installing graphics libraries and desktop services componen[OK]
[root@localhost VBOXADDITIONS_4.3.16_95972]#

Don’t worry if you get: Building the OpenGL support module [FAILED].

Now Reboot again...

By now you should be proficient at shutting down the VM via the Start (f) Orb -> Leave -> Shutdown , and restarting
it from the Oracle VirtualBox window using the **Start**(->) button.

When you see the login screen, login as yourself (i.e. the standard user).

Now the magic begins...

At the top of the window, you should see a row of menu items like this:

Click the View menu, to show these options:

2.17. Upgrade your Kernel 69

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

One of them is obvious: Fullscreen mode. Let’s try it out.

Click “Switch to Fullscreen”.

This will pop up a window telling us how to recover from this little adventure.

Note: Since your VM wants the keyboard, and your “Host” machine (PC or Mac) wants the keyboard we have to
define a “Safe“-key, which is called the “Host Key”.

Of course, you can redefine this to something else if you like, but for now the default is

70 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

• On a PC: Host Key = Right-CTRL, i.e. the Control key on the

Right side of the keyboard.

• On a Mac: Host Key = Left-Command Key, i.e. the Command key on the Left side of the keyboard (the
Command Key on a Mac keyboard looks like a 4-leaf clover).

Once you go Fullscreen there are two ways to get back to “normal”.

• One way is to press “Host + F”, which translates to the Right-Ctrl + F keys together.

• The other way is to hit the Host + Home keys together (Right-Ctrl + Home).

This pops up a little menu with Machine, View, Devices, etc., lets you select View and uncheck Fullscreen .

So, let’s try the Guest Addition of Fullscreen View.

Get ready. READ THIS FIRST.

You are going to: Click View->**Switch to Fullscreen** at the top of your VM window.

BUT REMEMBER: To switch back from Fullscreen, Type “HOST Key + HOME”. What’s your HOST Key again?
(PC: Right-Ctrl Mac: Left-Command)

Then CLick View and Uncheck “Switch to Fullscreen” to come back.

You probably won’t be able to see this page once you go Fullscreen with your VM.

Did it work?

Next try Seamless Mode. This is a really cool Addition. It allows you to basically have the functionality of both
OS’s—your native computer and Linux—running simultaneously.

So, again: Be ready to hit the Host + Home keys together to come back, if you need to. At the top of the VM window,
Click View->Switch to Seamless Mode. You should have a Panel (a long “Taskbar”) at the bottom of your desktop.

Click the Terminal icon on the Panel.

This should open a Terminal on your Desktop.

How cool is that?!

You are now ready to start doing science with your Linux system. In the next section we will make a couple more
simple alterations which will make your environment even easier to use.

2.17. Upgrade your Kernel 71

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

2.18 Configuring the Look-and-Feel

In this section, we are going to finish setting up your scientific computing environment with a couple final items.

2.18.1 Video for this section

Video for the section is here

Note that once you start the video, a Table-of-Contents icon appears on the bottom right control bar (between the
Volume and Fullscreen icons), allowing your to jump to sections in the video.

2.19 Shared Folders

Your scientific computing environment runs in its own world–a VirtualBox VM (Virtual Machine). While this system
shares many things with your host computer at the hardare level, it doesn’t have access to your Windows or Mac files.

One of the nice features of installing the VBox Guest Additions is that you can set up shared folders between you VM
and your Host OS. That way, you can use your computer as you normally would, say, read an email from your lab
partner with an attached data file from the experiment you did together, save it to your Desktop, and then access that
file in the VM and unleash your scientific unix tools on it.

The following instructions will show you how to set up a shared folders linking your “Desktop” and “My Documents”
folders to your unix environment.

• Start the VirtualBox program, but Don’t Start your Fedora Scientific VM.

Before you start your VM, highlight it, and click Settings, then click Shared Folders at the bottom of the left side
menu.

In the dialog box that appears, you should see a small blue folder and green plus on the right side; Click the +/Folder.

A dialog appears called “Add Share”. Click the dropdown arrow at the right side of the “Folder Path:” textbox. Click
the “Other” folder icon.

72 Chapter 2. Installing your Scientific Computing Environment

http://dirac.physics.pacific.edu/phys/jhetrick/www/PHYS27/ch2/Video/Fedora-Scientific-Virtualbox-Shared-Folders/Fedora-Scientific-Virtualbox-Shared-Folders_player.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

In the box that pops up, “Desktop” should be at the top (browse to find it, if Desktop is not at the top of this list).
Highlight “Desktop” to choose it, then click “OK” at the bottom of the dialog box.

This will fill in the fields of the “Add Share” dialog box. Be sure that you check the Auto-mount check box, and
click “OK”.

You should see the “Path” to your Desktop folder (C:/Users/jhetrick/Desktop for me), Yes for Auto-mount,
and Full under Access.

Repeat the above process exactly, but instead of choosing “Desktop”, this time choose “my Documents”.

2.19. Shared Folders 73

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Remember to check “Auto-mount”. At the end, the Shared Folders dialog window should look like this:

While you still have the Settings dialog window open, click General on the left menu, then click the Advanced tab.

On this tab, find Shared Clipboard, and choose Bidirectional from the dropdown list.

Do the same with Drag and Drop; choose Bidirectional.

74 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

This will allow you to use the Edit->Copy/Paste feature on each application window to copy/paste material from your
Host system to your Linux system.

Now click OK until you are are back to the main VirtualBox program window.

• Start your Fedora Scientific VM, and login normally.

2.20 Terminal/Shell Startup Configuration: the .bashrc file

Click the Terminal icon you added to the Panel in the last section. It’s the little black “TV set” on the right of
the Panel (the “Task Bar”) which should be at the top of your screen.

We met the Terminal in the previous section. When you start it up, it opens a text-based window (i.e. not a button and
menu GUI application; google “GUI” if you don’t know what it means).

The Terminal is ancient. It comes from time before we could talk with computers, before you could touch the screen
to make your choice, before we carried computers in our pockets, even before you you could point at things on the
screen with a mouse.

The Terminal comes from the Time of the Mainframe, when the computer was an enormous Machine housed in a large
room which was modified to handle the huge power consumption and wiring. On every user’s desk was a Terminal,
a little TV and a keyboard. The Terminal allowed users to sent text to the Machine, and receive text back, which was
displayed on the screen of the little TV. We still have such Machines, now called supercomputers.

The Terminal is just the TV. The program that runs in the Terminal is called “The Shell”. There are many different
unix shells; please read http://en.wikipedia.org/wiki/Unix_shell .

2.20. Terminal/Shell Startup Configuration: the .bashrc file 75

http://en.wikipedia.org/wiki/Unix_shell

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

In this course we will be using the Bash shell. The shell is a program that reads the text you enter at the prompt, and
interprests the commands, and carries them out. In the last section, we met the shell, the prompt, and a couple of
commands (among them: ls, pwd, cd, and su).

The Prompt is the small line of text that looks like this:

[jhetrick@localhost ~]$

This is the shell telling you that it’s waiting for you to type a command and hit ENTER. In fact, we’ll change this rather
generic prompt soon. For now, we have a few commands to issue in order to complete the customizations, before we
study the shell in more detail.

When you first start the Terminal, which then starts the Shell, it looks for a special, hidden file, named .bashrc. This
is a simple text file where you place configuration commands that will customize the behavior of the shell for you, as
well as extend its functionality. For example, most people put aliases (shorthand names) for common commands.

I have prepared a simple .bashrc file for you with a few configuration lines. Once you feel proficient at unix, you can
edit and change this file to your liking. Searching the web, you can find many (complex!) examples of .bashrc files
that people use and have shared.

To use my .bashrc file, you must first get it.

We first have to get this file onto your VM. So, of course, we’ll just download it, but not through a browser.

I’m assuming you have have your VM up and running, and you are logged in. If not, do so.

Now, let’s see an example of how powerful the shell is.

Open a Terminal and at the prompt, copy/paste (or type) the following text (exactly):

curl -O dirac.physics.pacific.edu/phys/jhetrick/www/PHYS27/.bashrc

Note: If you set up Bidirectional Clipboard Sharing (above), you should be able to simply cut and paste the link
above into the Firefox browser textbox.

Here we are using the program curl (Command line URL), which when you hit ENTER, goes out into the internet and
grabs the URL you asked for. It is insanely powerful. The -O switch (more about switches later) lets you configure
curl’s behavior at the command line. If you want you can tell curl to get a webpage , and then read that webpage for
URLs, get those, and then read those...etc. Yeah, that’s pretty powerful.

If things worked, curl should have responded with something like this:

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 1716 100 1716 0 0 83958 0 --:--:-- --:--:-- --:--:-- 86052

In particular you should see the Total Downloaded Size as 1716 bytes (second number).

76 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Click the [X] button on the Terminal window to close it. Then, click the Terminal icon on the panel to open a new
Terminal.

Now when the shell starts, it reads and executes the .bashrc file, and you should see a little message and a new
prompt, like this:

Initializing from ~/.bashrc
>- path
>- prompt
>- aliases

User jhetrick - Welcome to the Machine
sci[~]>

Now we are ready to to do some science!

2.21 Examine .bashrc

First, let’s look at the file you just grabbed. To do this, we’ll use less, a file pager/viewer. We’ll learn more about this
and other commands in the next chapter, but for now, just type

less .bashrc

at the prompt in your shell window, then ENTER (from now on, if I say “type something at the prompt”, you will
know that you follow that with ENTER, right?).

This will display the contents of the file .bashrc, which should look like the following.

To “page through” the file, go forward to the next page of text by hitting the SPACE bar. To go back and view the
previous page, hit the b key.

#
.bashrc initialization file
#
This file created by Dr. J. Hetrick
for PHYS 27/193 Introduction to
Scientific Computing
#
v. 4.0 Nov 2014

Source global definitions
if [-f /etc/bashrc]; then

. /etc/bashrc
fi

echo "Initializing from ~/.bashrc"

--- setup PATH to executables
if you want to add a directory to the
PATH you add it at the end, with a :

export PATH=".:$PATH:$HOME/bin"

echo " >- path"

2.21. Examine .bashrc 77

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

--- setup BASH SHELL --------
You can set the prompt to something useful by
setting the variable PS1.
\h means "Hostname" (the name of your computer
\w means "working directory"

This prompt has your hostname in it, useful
when you are on different machines and want to
know which one you are working on. However I've
"commented it out" of this file by putting
in front of it.
#PS1="\h[\w]>"

We can use this prompt for our Scientific VM
It will have the working directory inside the []
and I like a > for a prompt.

PS1="sci[\w]>"

echo " >- prompt"

--- Put aliases here -------

alias l='ls -F'
alias la='ls -aF'
alias ll='ls -lF'
alias lla='ls -alF'
alias lsd='ls -lF | grep "^d"' # only directories
alias m=less
this function lists the 20 most recently changed files
function lt() { ls -lFt "$@" | head -20 ;}

echo " >- aliases"

comment this out if too cheezy for you :)
by putting a # at the front. Notice it
echos the value of the USER environment variable

echo "User $USER - Welcome to the Machine"

First, every line that begins with a hash (#) is a comment. It will not be read as a command, but rather is there solely
for the reader.

After the top comment block describing the file, there is an if statement:

if [-f /etc/bashrc]; then
. /etc/bashrc

fi

This command effectively says “if there is a system bashrc (‘‘/etc/bashrc‘‘) file, read and execute its commands first”.

Next comes some comments about the PATH, and this command:

78 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

export PATH=".:$PATH:$HOME/bin"

This command adds the current folder (.) and a bin subfolder to the PATH–a colon (:) separated list of folders in
which the shell should look for executable programs.

Next, we change the prompt to something friendlier. The default prompt is: [user@localhost ~]$.

I prefer the following:

sci[~]>

What this does is let you know that you are currently logged into your Scientific environment (which we’re going to
call sci). Since I often login to other machines around the world via the terminal (and start a shell on that machine), I
always put the same .bashrc file on the remote machine, except that I change the name in the prompt to the name
or location of that machine, like dirac[~]> or hawaii[~]>.

Additionally, this prompt shows that you are currently working in your Home directory (or folder), which has a
nickname: ~ (the tilde).*Folders* (where files are stored) in Unix are called Directories. I will use the two terms
interchangably, and you will get used to it. Just remember:

Note: Directory = Folder

If you cd to another directory, such as your Pictures directory (do this now, by typing cd Pictures), you should
see that the prompt changes to

sci[Pictures]>

Did it? To move back to your Home directory, all you have to do is type cd (+ ENTER), and your prompt should
return to

sci[~]>

In this little exercise, in addition to learning how to move around a little, you’ve learned that the tilde–in the context
of directories–is a shorthand name for Your Home (or Default) Directory.

Note: ~ = your Home (default) directory

After setting the prompt (by defining the variable PS1=”sci[w]>”), the .bashrc file contains alias definitions.

alias l='ls -F'
alias la='ls -aF'
alias ll='ls -lF;
...

These are short hand names for common commands. As you already learned the ls command lists the contents of a
directory. You can change it’s behavior by adding switches, various letters prepended by a minus sign (like -F, -alqF,
-O, etc.).

For example, at your prompt, type ls.

Now type a single l (ell). It should show roughly the same thing, except that in the latter case, you typed the alias for
ls -F. The -F switch tells ls to “format” the output, by adding a trailing slash to directories, so that it is easier to
distinguish them from simple files.

Now type ll (ell ell). This version gives much more detail: permissions, owner, group, size, date, etc. This is called
a “long listing” and hence the alias ll.

2.21. Examine .bashrc 79

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Similarly, la will show ALL files, including hidden ones that start with a dot. Try it: type

la

2.22 Fixing the Shared Folders

When you booted your VM, the Shared Folders we created at the beginning of this document were “mounted (attached
to the file system) in a special system directory, /media to be specific, and they were created by the root user. We
have a couple things to do to make life easier.

First, in your Terminal, type

cd /media

then

ll (ell ell) to do a long listing the contents of above directory.

You should see

sci[/media]>ll
total 56
drwxrwx---. 1 root vboxsf 8192 Nov 10 10:19 sf_Desktop/
drwxrwx---. 1 root vboxsf 49152 Nov 10 16:18 sf_Documents/

This tells us that there are two directories: sf_Desktop/ and sf_Documents/. I like to use the trailing / to help
you get used to that meaning these are directories, not files.

the first part of each line for these directories shows the type of object (file, directory, or other) and the permissions.

drwxrwx---

means that this thing is a directory (d), and that the Owner (denoted by the first rwx) has read, write, and execute
privledges. The second rwx says that the Group has r,w,x, privledges. This means that, like the Owner of the object,
anyone in the file/directory’s Group can read, write (i.e. modify), or execute (in the case of a program) that file. For
Directories, x permission means that that group or person can cd into the Directory.

We then see that the Owner is root, and the Group for the file is the vboxsf Group.

drwxrwx---. 1 root vboxsf 8192 Nov 10 10:19 sf_Desktop/

Try to cd into the sf_Desktop directory. Do:

cd sf_Desktop

You should get an error telling you that you don’t have the correct permission to do so.

sci[/media]>cd sf_Desktop
bash: cd: sf_Desktop: Permission denied

Ouch!

One solution:

You could simply become the root user everytime you want to cd into this directory. You would first do su (change to
superuser account), issue the root password, then as root, cd sf_Desktop, but this is way cumbersome.

80 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

A better solution:

It’s far easier just to add you to the vboxsf Group. Then you would have the correct privledges to cd into
sf_Desktop.

However, only root has high enough privledges to edit your Group affiliations on the Machine. So, to make this
change, you do have to become root. But just this once.

The best solution: Do this:

In some previous exercises, you became root by typing the su command, and giving the root password. This basically
stops your shell program (the one that started with you as the user when you clicked the Terminal icon), and starts a
new shell in the same Terminal, but this time logged in as root. You get a prompt like this: [root@localhost
/media]#, and you have complete control of the machine.

There is a better way to do administrative activities which require root access, by using the sudo (super user do)
command. The difference is that with the root shell (and a prompt [root...]#) anything you type will be carried
out as the root user.

Using sudo, you are only able to issue one command at a time. When we set up your user account, we checked “Make
this user an Administrator” (didn’t we...??).

Type the following, substituting your username for YOURUSERNAME (my YOURUSERNAME = jhetrick, so I
would type sudo usermod -aG vboxsf jhetrick):

sudo usermod -aG vboxsf YOURUSERNAME

The sudo command will first ask to be sure that you are you: it will ask for YOUR password (not the root password).
This is so that, while you were out in the kitchen grabbing another beer, your evil roomate does not come in, and
seeing that you have an open Terminal and Shell running, issue a sudo command to erase your hard drive (it could
happen).

This command then adds you to the Group vboxsf, but the change doesn’t take effect until you login again

Instead of shutting down your whole VM machine and rebooting, you only need to Logout, then Login again.

Go ahead and Logout/Login. Then open a Terminal.

In your fresh Terminal window, cd to the /media directory

cd /media

2.22. Fixing the Shared Folders 81

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

List the contents of the directory with an l.

Now try to cd into the sf_Desktop directory.

Do a listing there by typing l

Do you see the things on your Desktop in that list? Here’s mine.

While you have your Terminal running, type a lone cd (no target directory after it) to get back to your Home directory.

Here we want to make two “Symbolic Links” to the Shared Folders we made. Then you won’t have to cd to the /media
directory every time. There will be shortcuts in your Home directory. To make these, type the following commands in
the terminal, in your Home directory.

ln -s /media/sf_Desktop winDesktop

ln -s /media/sf_Documents winDocs

(if you are on a Mac, you can use “macDesktop” and “macDocs”)

These lines start with ln (lowercase L N, for link), and the command makes shortcuts called winDesktop and
winDocs. Do an l to list the contents of your Home directory. Do you see these links? How are they designated so
you can tell them from normal files?

Do cd winDesktop

Then l

Do you see your Windows (or Mac) Desktop contents?

82 Chapter 2. Installing your Scientific Computing Environment

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

2.23 Fonts and Colors

Finally, I like to play with the font and color a little. This customization is completely up to you.

To change the font that the Terminal uses, go to the very top of the window and click “Settings”, then click “Edit
Current Profile”.

You can change almost everything about the Terminal, and I recommend staying away from everything but font and
color.

2.23. Fonts and Colors 83

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Click the “Appearance” tab and play around with the options. You can always click “Cancel” to go back to what it
was before. If you move the “Edit Profile” window to the side, you can see the effect of your choices on the Terminal.
Personally, I like a bold, 11 point, Monospace font, in a stark White-on-Black color scheme. But my eyes are old and
need the print to pop.

You are now ready to start using your scientific computing environment.

2.24 Homework

Homework 2 is here

84 Chapter 2. Installing your Scientific Computing Environment

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/hw2.html

CHAPTER

THREE

BASIC UNIX SKILLS

3.1 Moving Around in the Unix World

3.1.1 Video for this Section

Video for this section is not available yet.

3.2 Get Some Files

In order to learn about unix files and directories, let’s get some files and directories that we can explore together.

To do this we will use the tar command. Tar is an archiving tool for packing up a set of files and directories for
portable “shipment”, and you will often see a, so-called, tarball (an archive file in the tar format) for download on the
web.

A tar archive is really just all the files “glued” together, one after the other, with some header information. Usually,
this file is then compressed in size using the gzip method. A similar way to do both of these tasks (archiving several
files into one and compressing the archive) is the zip format, which creates files that end in .zip.

You can download the tar file for our course by copying this link, pasting it into a shell terminal window at the prompt,
and hitting ENTER.

curl -O dirac.physics.pacific.edu/phys/jhetrick/www/PHYS27/unixplay.tar.gz

Once you have downloaded the file, do a directory listing and see if you see the file unixplay.tar.gz.

If so, you can unpack the archive by typing (or cutting and pasting) the following command at the prompt:

tar zxvf unixplay.tar.gz

Now do a listing and verify that this command has created a new directory called unixplay/. We’ll come back to
these files shortly.

3.3 The Unix File System

Now that you have your Fedora system running and have some files to explore, let’s learn to move around a bit. We’ve
got to get used to doing things through a text based shell window. While that might seem extremely limiting at first,
it’s actually much more efficient, especially when you are connecting to another computer (like a supercomputer on
the other side of the country). A shell terminal uses very little bandwidth since it only needs to transfer characters
instead of pictures and mouse movements.

85

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

You are probably used to the Point-and-Click (GUI, or G*raphical *U*ser *I*nterface) environment of Windows and
Macs: when you want to do something, you (double) click on its **icon*, possibly enter some parameters (a file to
edit for example), and then work within that appliction. At the end you might save your work to a file, or print it. The
other big difference is that to find your files, you use a Graphical File Browser , like the one below. (We’ll come back
to the boxes marked with an arrow in just a minute)

in Windows, or

on a Mac.

86 Chapter 3. Basic Unix Skills

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

To find files and folders, you navigate your way around by clicking on icons, like this

Note: In Unix, folders are called directories.

That’s why the Unix command to move to a new directory is called cd, for Change Directory . This command moves
you to another folder–which I will henceforth call by its proper name, a directory.

Using a Graphical File Browser, you usually see all the files and subfolders as little icons which often represent the
type of file. You probably know how to change this behavior.

In your Host OS–either Windows (PC) or OSX (Mac), open some Folder on your computer with many files.

Click the red box marked on the images above, on the top menu bar.

Choose to simply List the files, or show the Details. Also you see that Folders are shown with a small Folder icon so
that you can distinguish these from regular files.

Notice that with Details you get size information, type, and date of last modification.

Now change the setting back to what it was before (or a new one if you like).

We will do something very similar to this in a Unix shell window, listing files from the prompt in a text-based shell
window. You will soon find it is almost as easy as the GUI way, and in many cases more powerful.

Open an shell/terminal window.

There is a default directory for each user, called the Home directory.

You may recall from the last chapter that the “full name” of your Home directory is ‘’/home/YOURUSERNAME” .

When you start a shell , or if you login to a computer where you have a unix account, the shell will give you a prompt,
and place you in your Home directory. This is where your init files are, like ‘’.bashrc” and others.

In fact, the way I have set up your system, the prompt tells you this.

A short hand symbol for your HOME dir is the symbol “~” (the tilda). Notice that in your prompt there is the following:
[~], meaning that you are working in your HOME dir (I will often say “dir” for directory).

3.3.1 Changing to a different directory

We’ve already learned about this, but mention it here again for completeness.

3.3. The Unix File System 87

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

cd (change directory)

The command cd means change the current working directory to ‘directory’. The current working directory may be
thought of as the directory you are in, i.e. your current position in the file-system tree.

Let’s change to the unixplay/ directory that you have just made by unpacking the tar file.

Note: I’m referring to the directory as unixplay/ with a / at the end. This is a unix-guru way of saying that
unixplay is a directory (by writing it with an ending /. However you don’t have to add that / when typing it in the the
cd command.

Type the following:

sci[~]>cd unixplay
sci[unixplay]>

Type ls (or better, the alias l) to see the contents. You should see

sci[~/unixplay]>l
anotherFile dirTWO/ gammaData/ scifi_list.txt yetanother
dirONE/ file_unixplay.txt ints.dat testfile

3.4 The Directories . and ..

Still in the unixplay/ directory, type

la (alias for ls -a)

As you can now see, in the unixplay/ directory (and in all other directories), there are two special directories called (.)
and (..)

In UNIX, “.” means the current directory, so typing

cd .

means stay where you are (the unixplay/ directory).

This may not seem very useful at first, but using “.” as the name of the current directory will save a lot of typing, as
we shall see later. We also need the . when trying to copy or move files to the current directory.

“..” means the parent of the current directory, so typing

cd ..

will take you one up one level in the directory tree.

Try it now.

In your unixplay/ directory, type:

cd ..

88 Chapter 3. Basic Unix Skills

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

This should move you back to your home directory and you prompt should show this by showing [~].

Now cd back down to the unixplay directory.

You should see [unixplay] in the prompt, helping you to remember where you are.

3.4.1 Going Home

Typing cd with no directory argument always returns you to your Home directory. This is very useful if you get lost
in the file system.

Try it

If you are in your unixplay/ dir, cd down one more level into dirONE/.

Note: In Unix, names are case-sensitive, meaning that the directory dirONE and dirone are different.

Now, type cd by itself. This takes you back to your home directory.

Note: Wherever you are, typing a bare cd command will take you Home.

Let’s see how far up in the unix file system we can go.

Type cd to start from your home directory. Does your prompt say [~] ?

Now type: cd .. to move up one level. Your prompt should have [home] in it. All users’ home directories are
subdirectories of a dir called home/.

Type cd .. to go up from there. You should see [/] in the prompt.

Type cd .. again. Did anything happen? No–you should still see the same [/] in the prompt.

That’s because you have gone up as far as you can go. The top level directory in a Unix file system is called, simply, /.
Below that are a number of dirs, one of which is home/, and below that is your home dir, e.g. /home/jhetrick/.

Now type cd to go home.

3.5 Pathnames

Type the following command at the prompt.

pwd (print working directory)

Pathnames enable you to work out where you are in relation to the whole file-system. For example, to find out the full
pathname of your dirONE/ directory in the unixplay/ directory.

navigate to dirONE/ directory using cd, then type

pwd

3.5. Pathnames 89

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

sci[~]>cd unixplay
sci[~/unixplay]>cd dirONE
sci[~/unixplay/dirONE]>pwd
/home/jhetrick/unixplay/dirONE

The full pathname to the dirONE directory is

/home/jhetrick/unixplay/dirONE

3.6 Unix commands for files and directories

First let’s review the ls command that we’ve already seen.

Let’s review:

When you first login, your prompt is placed in your home directory. Your home directory has the same name as your
user-name, for example, jhetrick (or ” ~” for short).

To find out what files and directories are in your current directory, you type

ls

The ls command lists the contents of your current working directory.

sci[~]>ls
Desktop Downloads Pictures Templates winDesktop
Documents Music Public Videos winDocs

If there were no files visible in your home directory, the prompt would simply be returned.

3.6.1 Command Options (aka Switches)

As we have seen, it turns out that ls does not, actually, list all the files in your home directory only non-hidden files.
In unix it’s easy to make a hidden file, simply start its name with a dot (.)

Files beginning with a dot (such as .bashrc, .emacs, etc.) are known as hidden files and usually contain program
configuration information.

However you can list ALL the files in your home dir by giving ls a switch to modify its behavior.

To list all files in your home directory including those whose names begin with a dot, type

ls -a

This now produces

sci[~]>ls -a
. Downloads Pictures
.. .emacs Public
.bash_history .esd_auth Templates
.bash_logout .gnome2 .vboxclient-clipboard.pid

90 Chapter 3. Basic Unix Skills

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

.bash_profile .gnome2_private .vboxclient-display.pid

.bashrc .gnupg .vboxclient-draganddrop.pid

.cache .gtkrc-2.0-kde4 .vboxclient-seamless.pid

.config .kde Videos
Desktop .local winDesktop
.dmrc .mozilla winDocs
Documents Music .xsession-errors

As you can see, ls -a lists many files that are normally hidden.

-a is an example of an option (sometimes called a switch). The options change the behaviour of the command. There
are online manual pages that tell you which options a particular command can take, and how each option modifies the
behaviour of the command.

Note: We setup several aliases for ls with various switches in your .bashrc file in the last chapter. You have an
alias for ls -aF in your .bashrc file. The alias is la, so typing la is exactly the same as typing ls -aF.

ls -F

Alias: l

Another option I like to add to your toolkit is the -F (Format) switch for ls. This option puts “/”s at the end of each
directory, which makes it easier to distinguish files from subdirectories. It also puts a “*” at the end of each file which
is executable. These files are programs or “scripts that can be run (like a .exe file in Windows), and an “@” at the end
of links.

sci[~]>ls -F
Desktop/ Downloads/ Pictures/ Templates/ winDesktop@
Documents/ Music/ Public/ Videos/ winDocs@

As you can see this option makes it easier to see which files are just files and which are subdirectories. It’s particularley
useful when you are working in a terminal which doesn’t support color coding.

Question
Which files are directories? What type are the other files?

3.6.2 Man (manual) pages

A wonderful feature of the unix shell are the man pages. At the prompt, type

man ls

This will bring up the Manual Page(s) for the ls command. The man page is a text file which is opened in the less
pager that we met in the last chapter. less show you one terminal window full of the file at a time, and lets you move
forward and backward through the manual with PageUp and PageDown (or SpaceBar and “b”).

LS(1) User Commands LS(1)

NAME
ls - list directory contents

3.6. Unix commands for files and directories 91

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

SYNOPSIS
ls [OPTION]... [FILE]...

DESCRIPTION
List information about the FILEs (the current directory by default). Sort
entries alphabetically if none of -cftuvSUX nor --sort is specified.

Mandatory arguments to long options are mandatory for short options too.

-a, --all
do not ignore entries starting with .

-A, --almost-all
do not list implied . and ..

--author
with -l, print the author of each file

-b, --escape
print C-style escapes for nongraphic characters

[More]

The man page is GREAT for learning about all the possible switches and is useful when you want to do something
and think ls might have a switch that does what you want.

For example, scrolling through the man page for ls, you can see that one of the switches is -1 (minus one). This
switch lists one file per line. I have used that switch many times when I need to produce a single column list of files to
pass to another program.

Apropos (man -k)

If you don’t know the name of a command, but want to search all possible shell commands, you can type:

apropos SEARCH-WORD

For example, suppose you didn’t know that there was a unix command to list the contents of your directory (but you
did know about the apropos command). You could type:

apropos list

This produces:

sci[~]>apropos list
uffixes (7) - list of file suffixes
acl (5) - Access Control Lists
appres (1) - list X application resource database
argz (3) - functions to handle an argz list
argz_add (3) - functions to handle an argz list
argz_add_sep (3) - functions to handle an argz list
...
ls (1) - list directory contents
...
XwcTextPropertyToTextList (3) - convert text lists and text property structures
zipinfo (1) - list detailed information about a ZIP archive
zonetab2pot.py (1) - Converts a timezone list to a PO file template.

showing all the commands and Manual entries with the word “list” in the description. From this list you would learn
that there is the ls command, and could learn more about it by typing man ls.

92 Chapter 3. Basic Unix Skills

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Try doing: man man

3.6.3 Making Directories

mkdir (make directory)

We will often need to make a subdirectory in your current directory to hold new files, or particularly, when you start a
new project.

TIP:

Keep different projects in separate directories and subdirectories, and give files names that help identify them,
like: comptonExptTheta35deg.dat

To make a subdirectory called newdir in your home directory type the following:

mkdir newdir

sci[~]>mkdir newdir
sci[~]>

The shell returns the prompt. However it has just created the newdir directory.

To see the directory you have just created, type l

sci[~]>mkdir newdir
sci[~]>l
Desktop/ Downloads/ newdir/ Public/ unixplay/ Videos/ winDocs@
Documents/ Music/ Pictures/ Templates/ unixplay.tar.gz winDesktop@

3.7 Understanding pathnames

First type cd to get back to your home-directory, then type

l newdir

to list the conents of your newdir directory.

Now type

l subdir

You will get a message like this -

subdir: No such file or directory

The reason is, subdir is not in your current working directory. To use a command on a file (or directory) not in the
current working directory (the directory you are currently in), you must either cd to the correct directory, or specify
its “full pathname”. To list the contents of your subdir directory, you must type

3.7. Understanding pathnames 93

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

l newdir/subdir

Home directories can also be referred to by the tilde ~ character. It can be used to specify paths starting at your home
directory. So typing

ls ~/newdir

will list the contents of your newdir directory, no matter where you currently are in the file system.

Try this:

cd down into subdir/

Try to list the contents of newdir/ by doing ls newdir.

This fails since newdir/ is not in subdir.

Now use the full pathname with the ~ shortcut:

ls ~/newdir

This time it works.

What do you think

ls ~

would list?

What do you think

ls ~/..

would list?

A handy command to know about is the tree command. Try it in your home directory. Type:

tree

at the prompt. It should show you a “tree” (with branches) of your directories and files.

If you just want to see directories, type:

tree -d

with the -d switch.

If you want to see sizes of files and directories, use the -h switch (Try it).

94 Chapter 3. Basic Unix Skills

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

3.8 Command Summary

Command Meaning
ls list files and directories
ls -a list all files and directories
mkdir dir make a directory called dir
cd dir directory change to named directory
cd change to home directory
cd ~ change to home directory
cd .. change to parent directory
pwd display the path of the current directory
man cmd page through manual entries for cmd
tar zxvf file.tar.gz unpack a .tar.gz file
tree show directory tree structure

aliases equivalent to meaning
l ls -F list (formatted)
la ls -aF list all (incl. hidden)
ll ls -lF long list
lt ls -t | head -20 list most recent
m less file pager
fin file find . -name file find a file

3.9 Copy, Move, Delete, and Examine Unix Files

3.10 Video for this section

Video for this section is not available yet.

3.11 Copying Files and Directories

3.11.1 The cp command

cp file1 file2

3.8. Command Summary 95

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

is the command which makes a copy of file1 and called file2 . In this case, both files would be in the current
working directory.

That’s pretty simply. You might do

cp mycode.py mycode.backup23sept

to make a backup copy of your paper before you editted it

Other forms are:

cp file1 dir

This form places a copy of file1 in directory dir.

Notice that it has the same form as copying a file and giving it a new name, but the second argument to cp is a
directory destination. This usage copies the file file1 to the location dir, but uses the same name as the original.

Also, you can do:

cp file1 file2 file3 dir

which places copies of the three files file1, file2, and file3 in directory dir. Notice that if the last argument
to cp is an existing directory , all preceding files in the argument list will be placed there. Both files and directories
can have full pathnames if we want to copy files to different places in the file system.

If I were copying the three files above (named file1, file2, and file3), I would use a Wildcard match with *,
and do it like this

cp file* dir

This form matchs all files whose names begin with file.

Time for an example.

In your unixplay/ dir, in one of the subdirectories created when you unpacked the tar file, you should find a file
named testfile.

Verify this by listing the directory unixplay/.

Now cd to your home directory, and type:

fin testfile

I want to show you how your find alias works. Try it again by this time do:

fin test*

(You NEED the \ in front of the *). That’s how you give a wildcard match to the fin alias.

Ok, let’s play. cd into unixplay/.

Make a copy of testfile called testfile2, by typing

cp testfile testfile2

Verify by listing that you now have 2 files: testfile and testfile2.

Now let’s take a file stored in unixplay/ and use the cp command to put a copy in your newdir/ directory.

96 Chapter 3. Basic Unix Skills

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

First, cd into your newdir/ directory. It’s below your home directory. Wherever you are, you can get there by typing
the full pathname (using the ~ alias for your home dir):

cd ~/newdir

Then at the prompt, type,

cp ~/unixplay/file_unixplay.txt .

Note : Don’t forget the dot . at the end! Remember, in Unix, the dot means the current directory. Also notice that we
used full pathname of the original (source) file including the shortcut ” ~ ” for your home directory.

The above command means copy the file file_unixplay.txt , which is in unixplay/ (itself a sub-directory
of your home directory) to the current directory (“.”), keeping the name the same.

The effect of these commands is as follows:

Note: You can clone a whole directory tree and its contents (i.e. including subdirectories) by using the “Recursive”
copy switch, -r, with cp.

Doing cp -r dir1 dir2 will place a copy of dir1/ and ALL its contents and subdir-contents in dir2/.

3.12 Moving and Renaming Files and Directories

3.12.1 The mv command

The mv command can be used to “move” files and whole directories as well as to

mv file1 file2

moves, or really renames, file1 to file2

3.12. Moving and Renaming Files and Directories 97

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

To move a file from one place to another, you also use the mv command. This has the effect of moving rather than
copying the file, so you end up with only one file rather than two.

In this usage you would do:

mv file1 dir1

This would place file1 in dir1, and erase it from its current location.

Let’s practice.

Use mv to rename a file

We are now going to rename the file testfile3 to testfile4.

First, change directories to your newdir/ directory (remember how?) . Then type l to see what files are there. Do you
see testfile3 that you made by copying testfile2 above?

Type

mv testfile3 testfile4

Now do a listing to see if testfile3 is gone and replaced by testfile4 (i.e. that testfile3 was renamed to
testfile4).

Use mv to move a file to somewhere else

We will now move the file testfile4 back into your unixplay/ directory.

Do a listing to verify that testfile4 is still there in your newdir/ directory.

Now do

mv testfile4 ../unixplay

You can see in this command that the destination directory is up one level (..) and then down into the unixplay/
directory. Verify that the move worked–that testfile4 is not in the current directory (newdir/) and is now in
unixplay/ .

98 Chapter 3. Basic Unix Skills

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Use mv on a whole directory

Amazingly, you can mv a directory–either in the sense of renaming or moving it.

cd to your home directory .

Do a listing to see that the directories unixplay/ and newdir/ are there.

Now do

mv newdir dirTHREE

Do you see that this is using mv to rename the directory? Verify that it worked. Was newdir/ been renamed to
dirTHREE/ ?

Still in you home dir, do

mv dirTHREE unixplay

This will move the newly renamed dirTHREE/ into your unixplay/ directory.

Verify that dirTHREE/’’ is now a subdirectory of ‘‘unixplay/. There should also be a dirONE/
and dirTWO/ there as well.

3.12. Moving and Renaming Files and Directories 99

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

3.13 Removing Files and Directories

Warning: The rm and rmdir commands erases your files and dirs. Unix doesn’t have a Recycle Bin where you
can find the files you accidentally deleted. This Unix OS considers you to be God. If you say “delete this file, Unix
complies with no wimpering; No “Do you really want to do that” warnings, or other protestations. So, be aware
when you delete (rm) files and directories.

3.13.1 rm and rmdir

To delete (or remove) a file, use the rm command. As an example, we are going to create a copy of the pope.txt
file then delete it.

Do a listing inside your unixplay/ directory

Is the file file_unixplay.txt there? We don’t need this one anymore.

Do

rm file_unixplay.txt

List the directory’s contents. The file_unixplay.txt should have been listed before you did the rm command,
but then be gone in the second listing, since you rm‘ed it.

You can use the rmdir command to remove a directory (make sure it is empty first). Try to remove the unixplay/
directory. You will not be able to do so, since Unix will not let you remove a non-empty directory with rmdir
(without taking extra steps).

You have two options for removing a directory that has files in it (assuming you don’t need the files!!).

1. You can cd into the directory, delete all the files by typing rm *, then cd back up to the parent directory (cd
..), and typing rmdir dir.

2. You can use the (very long) switch, --ignore-fail-on-non-empty, as in rmdir
--ignore-fail-on-non-empty dir.

3. You can actually use: rm, the same command you use for files. Just give it the -rf switch. These are force
(-f) and recursive (-r). This will travel down the directory and its subdirs, removing everything in its path.

Warning: This last way: rm -rf dir is convenient, but note that it is very powerful! If you cd to / (the top
of the unix file system), and type rm -rf you will erase your entire disk, with no way to recover (unless you are
making backups). That would probably be bad. Similarly, people have been known to do rm -rf * thinking
they were down in a subdirectory and wanted to prune everything below. Then they realized that they were actually
in their home directory. Usually they swear a lot when they realized what’s happened. So–BEWARE. With great
power comes great responsibility!

Create a directory called tempstuff using mkdir, cd into tempstuff/ and do touch zap. The touch
command will create a file of zero size named zap in the tempstuff/ directory.

Now try to delete the tempstuff/’’ directoty using either the ‘‘rmdir or rm -rf commands.
You might try the experiment with both commands.

100 Chapter 3. Basic Unix Skills

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

3.14 Manipulating the contents of files

3.14.1 cat (Concatenate)

The command cat (for concatenate or to join) can be used to display the contents of a file on the screen. Type:

cat testfile

This is fine since the file contains a small amount of text which all fits on the screen.

If the file is bigger than will fit in an xterm window, we will use the less (pager) command, which you have already
met before.

You can also do cat file1 file2 file3. This will concatenate (add together) all three files into one long file
and spew it to the screen. Unless the file is small enough to fit whole on the screen, cat is most often used to pass the
contents of one file to another program.

Try it with the three files in the unixplay/ dir. Do

cat testfile anotherFile yetanother

This should produce

This is a text file, called testfile.
This is another file.
This is yet another file.

The cat command printed the contents of each file, one after the other.

3.14.2 less (Page through a file)

The command less displays the contents of a file onto the screen one page at a time, which is much more suitable
for actually reading a file. In your unixplay/ dir, you will find a a subdir called dirONE‘ which contains the file
“KublaKhan.txt”.

cd to dirONE/, then do

less KublaKhan.txt

Press the SPACE-BAR (or PgDn) if you want to see the next page, and “b” (or PgUp) to go back. Type “q” when you
want to quit reading. As you can see, less is much better than cat for reading long files.

less is a modern replacement to the original Unix paging file viewer called “more”. The more program printed a
page at a time, but offered little other functionality. It’s a bit of Unix geek humor that the replacement for the more‘
program would be named "‘‘less”.

less offers many features for searching and moving. More on this below. You can see more of the features and how
to use them by typing “h” while viewing a file with less (type “q” to “Quit” Help)..

3.14.3 head (the first lines of a file)

The head command writes the first ten lines of a file to the screen.

First clear your screen (by typing clear, of course!), then cd to your unixdir/ directory. First find the file
ints.dat and view it with less. It contains the first 100 integers. Now type

3.14. Manipulating the contents of files 101

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

head ints.dat

Then type

head -5 ints.dat

What difference did the -5 option make to the head command? This generalizes to -n, where n is the number of lines
you want to print.

3.14.4 tail (the last lines of a file)

The tail command writes the last ten lines of a file to the screen.

clear the screen and type

tail ints.dat

Question: How can you view the last 15 lines of the file?

3.15 Searching the contents of a file

3.15.1 Simple searching using less

Using less, you can search though a text file for a keyword (or text pattern). For example, to search through
KublaKhan.txt for the word pleasure, type

less KublaKhan.txt

(You should be able to find this file by now, even if you forgot where it is).

Now, while still viewing the file in less, type a forward slash (/) followed by the word you wish to search for, like
this:

/pleasure

As you can see, less finds and highlights the keyword. Type the ” n” key to search for the next occurrence of the word.

3.15.2 grep (search multiple files for a word)

This is a REALLY useful command. (don’t ask why it is called grep. Ok, if you must know, the answer’s here)

grep is one of many standard UNIX utilities. It searches files for specified words or patterns.

First clear the screen, cd into unixplay/, do a listing and find the file scifi_list.txt. This is a (somewhat
outdated) list of the top Science Fiction books of all time, in random order. Have a look with less. Then type

grep time scifi_list.txt

102 Chapter 3. Basic Unix Skills

http://en.wikipedia.org/wiki/Grep#History

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

As you can see, grep has printed out each line containg the word time (in color too!)

Or has it ????

Try typing

grep Time scifi_list.txt

The grep command, by default, is case sensitive; it distinguishes between time and Time.

To ignore upper/lower case distinctions, use the -i switch, i.e. type

grep -i time scifi_list.txt

Try it.

To search for a phrase or pattern, you must enclose it in single quotes (the apostrophe symbol). For example to search
for the phrase Time Machine , type

grep ’Time Machine’ scifi_list.txt

Some of the other options of grep are:

-v display only those lines that do NOT match the expression

-n precede each matching line with the line number

-c print only the total count of matched lines

Try some of them and see the different results. Don’t forget, you can use more than one option at a time. For example,
the number of lines without the words time or Time is

grep -ivc time scifi_list.txt

3.15.3 wc (word count)

A handy little utility is the wc command, short for Word Count. To do a word count on scifi_list.txt , type

wc -w scifi_list.txt

To find out how many lines the file has, type

wc -l scifi_list.txt

With no options

wc scifi_list.txt

wc prints:

100 746 4173 scifi_list.txt

which shows the number of: lines words bytes filename.

3.15. Searching the contents of a file 103

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

3.16 Sort the contents of a file

The file scifi_list.txt is nice; it contains the top 100 Science Fiction books. However, it would be nicer if they
weren’t in random order!

No problem–use sort!

First have a look at the file using less. The columns are

1995 53 Stephenson, Neal The Diamond Age
1956 36 Bester, Alfred The Stars My Destination
2000 89 Reynolds, Alastair Revelation Space
...

or Year Rank Author Title.

If you simply do

sort scifi_list.txt

you will order the file alphabetically on the first column:

1818 52 Shelley, Mary Frankenstein
1864 57 Verne, Jules Journey to the Center of the Earth
1870 32 Verne, Jules 20,000 Leagues Under the Sea
1884 92 Abbott, Edwin A Flatland
1889 86 Twain, Mark A Connecticut Yankee in KA's Court
1895 16 Wells, H G The Time Machine
1897 77 Wells, H G The Invisible Man
1898 18 Wells, H G The War of the Worlds
...

Notice that “alphabetical” on the year, ends up ordering the years.

This is because alphabetical order is

0123...89ABCD...XYZabcd...xyz.

Nice! Now we see the top books, ordered by year.

How about sorting by rank (in column two)?

Do:

sort -k 2 scifi_list.txt

which means “sort alphabetically on column 2”. You should see:

1965 1 Herbert, Frank Dune
1968 10 Clarke, Arthur C 2001: A Space Odyssey
1974 100 Lem, Stanislaw The Cyberiad
1970 11 Niven, Larry Ringworld
1959 12 Heinlein, Robert A Starship Troopers
1968 13 Dick, Philip K Do Androids Dream of Electric Sheep?
1932 14 Huxley, Aldous Brave New World
1973 15 Clarke, Arthur C Rendezvous With Rama
1895 16 Wells, H G The Time Machine
1966 17 Heinlein, Robert A The Moon is a Harsh Mistress
1898 18 Wells, H G The War of the Worlds
1989 19 Simmons, Dan Hyperion
1985 2 Card, Orson Scott Ender's Game
1954 20 Clarke, Arthur C Childhood's End

104 Chapter 3. Basic Unix Skills

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

1950 21 Bradbury, Ray The Martian Chronicles
...

You can see that the books are ordered by the second column now, but the order is wrong!. It’s alphabetical, but what
we really wanted was “numerical” ordering. This time do:

sort -k 2 -n scifi_list.txt

This time we get it the way we wanted:

1965 1 Herbert, Frank Dune
1985 2 Card, Orson Scott Ender's Game
1951 3 Asimov, Isaac Foundation
1979 4 Adams, Douglas Hitch Hiker's Guide to the Galaxy
1949 5 Orwell, George 1984
1961 6 Heinlein, Robert A Stranger in a Strange Land
1954 7 Bradbury, Ray Fahrenheit 451
1984 8 Gibson, William Neuromancer
1950 9 Asimov, Isaac I, Robot
1968 10 Clarke, Arthur C 2001: A Space Odyssey
1970 11 Niven, Larry Ringworld
1959 12 Heinlein, Robert A Starship Troopers
1968 13 Dick, Philip K Do Androids Dream of Electric Sheep?
1932 14 Huxley, Aldous Brave New World
1973 15 Clarke, Arthur C Rendezvous With Rama
...

We could also alphabetize the file on the author’s names:

sort -k 3 scifi_list.txt

which gives us:

1884 92 Abbott, Edwin A Flatland
1979 4 Adams, Douglas Hitch Hiker's Guide to the Galaxy
1950 9 Asimov, Isaac I, Robot
1951 3 Asimov, Isaac Foundation
1954 29 Asimov, Isaac The Caves of Steel
1955 49 Asimov, Isaac The End Of Eternity
1972 43 Asimov, Isaac The Gods Themselves
1985 68 Atwood, Margaret The Handmaid's Tale
1988 56 Banks, Iain M Player Of Games
1990 65 Banks, Iain M Use of Weapons
1985 97 Bear, Greg Blood Music
1985 60 Bear, Greg Eon
1953 64 Bester, Alfred The Demolished Man
1956 36 Bester, Alfred The Stars My Destination
...

Try:

sort -k 3 -r scifi_list.txt

What did the -r option do? sort is VERY handy!

3.16. Sort the contents of a file 105

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

3.17 Command Summary

Command Meaning
cp file1 file2 make a copy of file1 called file2
cp file1 dir put a copy of file1 in dir
cp f1 f2 f3 dir copy files f1 f2 and f3 to dir
cp fi* dir copy all files which match “fi”... to dir
fin file find file, by searching . and all subdirs
fin fi* find files matching “fi” (wildcard: use *, not *)
mv file1 file2 move or rename file1 to file2
mv file1 dir move file1 into dir
rm file remove a file or files
rmdir dir remove an empty directory
rm -rf dir forcibly delete directory, files, and subdirs
cat file print a file
cat f1 f2 f3 print a files f1, f2, and f3 all together
less file display a file a page at a time
head file print the first few lines of a file
head -30 file print first 30 lines of a file (works for any n)
tail -n file print the last n lines of a file
grep ‘pattern’ file* check file(s) for ‘pattern’
grep -i ‘pattern’ file* check file(s)... ignore CASE of match
grep -v ‘pattern’ file* check file(s)... report if DOES NOT contain pattern
grep -n ‘pattern’ file* check file(s)... report LINE NUMBER of match
grep -c ‘pattern’ file* check files(s)... report NUMBER OF MATCHING LINES
wc file count number of LINES / WORDS / CHARACTERS in file
sort file sort lines of a file, ALPHABETICALLY on 1st column
sort -k N file sort lines of a file, on N-th COLUMN
sort -n -k N file sort lines of a file, NUMERICALLY, on N-th column
sort -r file sort lines of a file, report in REVERSE order

106 Chapter 3. Basic Unix Skills

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

3.18 Controlling Data Flow

3.18.1 Video for this section

Video for this section is not available yet.

3.18.2 Stdout and Stdin

Most processes initiated by Unix commands write their output to the standard output channel (offically called
stdout), that is, they write to the terminal screen. Similarly most programs take their input from the standard
input, (stdin) i.e., they read input from the keyboard. There is also the standard error , where processes write their
error messages, which is by default, also the terminal screen.

Here is one rather abstract example.

We have already seen how to use the ‘‘cat‘ command to write the contents of a file to the screen.

This time however, type cat without specifing a file to read. Just type:

cat

Without specifying a file, the cat program has no content to print to the screen.

After typing cat and ENTER, the cursor goes to the beginning of the next line and waits.

3.18. Controlling Data Flow 107

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

sci[~]>cat

Type a few words on the keyboard and press the ENTER key. You should see your words as you type, then each time
you hit ENTER, the word(s) you typed should be printed again.

sci[~]>cat
Here is some text[ENTER]
Here is some text
and some more[ENTER]
and some more
you get the idea[ENTER]
you get the idea

Finally, type Ctrl-d (the CTRL key and the “d” key, simultaneously).

What happened?

If you run the cat command without specifing a file to read, then instead of reading from a file, it reads from stdin
(standard input, i.e. the keyboard), then writes to stdout (standard output, the screen), until receiving the End of
File signal (CTRL-D).

In Unix, we can redirect both the input and the output of commands, which can be VERY powerful.

3.18.3 Redirecting the Output: >

We use the > symbol to redirect the output of a command to a file. In your unixplay/ directory is a little program
called squares.py which simply prints out integers and their squares.

cd to your unixplay/ directory, and do a long list (use your alias‘‘ll‘‘, or do ls -lF). Notice that squares.py
has is shown with a trailing *

sci[unixplay]>ll
total 44
-rw-rw-r--. 1 jhetrick jhetrick 22 Sep 24 15:58 anotherFile
drwxrwxr-x. 2 jhetrick jhetrick 4096 Sep 24 15:58 dirONE/
drwxrwxr-x. 3 jhetrick jhetrick 4096 Sep 24 15:58 dirTWO/
-rw-rw-r--. 1 jhetrick jhetrick 53 Sep 24 15:58 file_unixplay.txt
drwxrwxr-x. 2 jhetrick jhetrick 4096 Sep 24 15:58 gammaData/
-rw-rw-r--. 1 jhetrick jhetrick 292 Sep 24 15:58 ints.dat
-rw-rw-r--. 1 jhetrick jhetrick 4273 Sep 24 15:58 scifi_list.txt

-rwxrw-r--. 1 jhetrick jhetrick 468 Nov 21 10:07 squares.py*

-rw-rw-r--. 1 jhetrick jhetrick 38 Sep 24 15:58 testfile
-rw-rw-r--. 1 jhetrick jhetrick 26 Sep 24 15:58 yetanother

We’ve alread met the trailing / decoration, indicating a directory, as well as the trailing \@ showing links (shortcuts).
Now you are seeing the * which indicates that the file is executable–it’s a program or script that can be run, and it
will do something.

Go ahead and type

squares.py

If called with no arguments (i.e. just by itself), it prints the first 10 integers and their squares. (Did it?)

108 Chapter 3. Basic Unix Skills

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

If called with a min and max, like this:

squares.py 20 30

it prints the integers and squares between the min and max (20 and 30 in this case) numbers, as shown above. These
numbers are called the arguments to the command. The output is shown below.

20 400
21 441
22 484
23 529
24 576
25 625
26 676
27 729
28 784
29 841
30 900

Now let’s redirect the output to a file. Type this:

squares.py > squares.out

Verify that the output file is there by listing (l) and then have a look at the file squares.outwith less. Remember,
you have an alias for less in your .bashrc file. You can use the alias m for less, so typing

m squares.out

should show you the first 10 integers and their squares, in your newly created data file, squares.out.

When doing scientific computing we will often use this method to catch the output of a program in a file. We can then
use other tools on the file, such as sort or plot the data with gnuplot.

Try it again, but give squares.py some arguments. Catch the output in the same file as above, again:

squares.py 20 30 > squares.out

Check the output file again with less (or m).

Notice that the previous squares.out file, with integers 1 through 10, has been overwritten by the second use of
the redirect >.

Note: It is important to remember that when using > by itself, the redirection output file is first cleared before the
output is collected. Your previous file “squares.out” has been lost and replaced with the new output.

3.18.4 Append Output to a File: >>

If instead of using > for redirection, we can use the double redirect symbol: >> to append data to an existing file, as
opposed to overwritting it. This is very handy if we do a computation over and over and want to add the result to the
end of the output file after each iteration.

Look at your squares.out file with less. It should contain the squares of the integers from 20 to 30. Now, do

squares.py 31 40 >> squares.out

Verify that the file squares.out now contains the integers and squares from 20 to 40. The last command appended
the results from 31 to 40 to the existing file squares.out which already had 20 through 30.

Note: Using >> does NOT erase, then rewrite the output file. It preserves the output file, and adds to it.

3.18. Controlling Data Flow 109

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

3.18.5 Redirecting the Input: <

We can use the < symbol to redirect the input to a command from somewhere else, usually a file.

In the unixplay/ directory is another executable file called: cubes.py

Run this program by typing cubes.py.

This time, the program will prompt you for input. Instead of taking command line arguments like squares.py
above, it asks you to input the numbers:

sci[unixplay]>cubes.py
Enter MIN:

Enter a small integer, like 3, and then ENTER.

sci[unixplay]>cubes.py
Enter MIN: 3
Enter MAX:

Do the same for the maximum integer (enter a number greater than the MIN integer).

sci[tmp]>cubes.py
Enter MIN: 3
Enter MAX: 8

3 27
4 64
5 125
6 216
7 343
8 512

The program outputs the cubes of the integers from MIN to MAX.

This program is a little different than squares.py. squares.py used “command line arguments”: items given
on the command line after the name of the program that are passed to the program to modify its behavior.

cubes.py prompts you for input, asking you questions, to which you input data. So it is expecting YOU to give it
data, via stdin—the keyboard

We can put this input data intp a file, then redirect the input to cubes.py from that file.

First, let’s put the input numbers in a file. Since we haven’t learned how to edit a text file yet, we can use cat as we
did above. Without specifying an output file, cat, by itself, will read from stdin (the keybord) and write to stdout (the
screen). We can use output redirection, >, to redirect that output to a file!

When we run cubes.py, it wants us to input two numbers, the MIN and MAX integers.

So, we want to have a file that contains the two numbers that we would input to cubes.py if we were typing those
inputs by hand from the keyboad. In our example above I used 3 and 8.

We type cat > in.cubes with no filename specified for cat to read, then redirect the output of cat to a file called
in.cubes.

``sci[unixplay]> cat > in.cubes`` [ENTER]

110 Chapter 3. Basic Unix Skills

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

The cursor will go the beginning of the next line, like it did above, as cat waits for you to type something.

So, type

3
8
[CTRL-D]

Now, do an listing to see that your new file, in.cubes is there.

If you want to see what the last file produced was (it should be in.cubes), use the lt alias I put in your .bashrc file.
Do

lt

and you should see in.cubes at the top of the list.

Have a look at in.cubes with less. It should contain two lines, with: 3 and 8.

Now use this file as the input to cubes.py by redirecting input using <

sci[unixplay]>cubes.pl < in.cubes
Enter MIN: Enter MAX:
3 27
4 64
5 125
6 216
7 343
8 512

This should produce the integers from 0 to 20 and their cubes. Does it?

Notice that when cubes.py runs, it prints the prompts “Enter MIN:” and “Enter MAX:”, but now reads from the file
in.cubes instead of stdin (the keyboard).

We used the < to redirect the input to cubes.py from a file instead of from stdin.

3.18.6 < and >

You can use both input and output redirection at the same time! (I can hear the sound of your mind being blown).

command < in.file > out.file

will make command read input from the file in.file and catch the output in the file out.file.

Try this yourself. Use input and output redirection as described above to save the cubes of integers from 0 to 2 to a file
called cubes_0_20.out.

3.19 The Pipe: |

Previously we learned a few really useful commands: grep, sort, and wc. Be assured, there are many more.

It turns out that we can string these together so that the output of one command serves as the input to the next, using
the ” pipe”. This is kind of like redirecting the output and input to a file, but instead of using files on the hard drive,
we can pass all the data between programs in memory (which is much faster and more convenient).

3.19. The Pipe: | 111

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

The “pipe” is the vertical bar “|” on your keyboad, above the “\” backslash.

Recall our file, scifi_list.txt, which contains the year of publication, rank, author, and title of 100 of the best
science fiction works. Let’s ask some questions:

Suppose you want to know the rank in popularity (column 2 in scifi_list.txt) of the books by Robert Heinlein
. Have a look at the file to remind yourself what’s there. Heinlein’s books are mixed in with the rest–randomly. grep
comes to the rescue: grep Heinlein scifi_list.txt produces

1961 6 Heinlein, Robert A Stranger in a Strange Land
1973 41 Heinlein, Robert A Time Enough For Love
1958 93 Heinlein, Robert A Have Space-Suit - Will Travel
1957 84 Heinlein, Robert A Citizen Of the Galaxy
1951 88 Heinlein, Robert A The Puppet Masters
1956 80 Heinlein, Robert A The Door Into Summer
1966 17 Heinlein, Robert A The Moon is a Harsh Mistress
1959 12 Heinlein, Robert A Starship Troopers

Then, to get these ordered by popularity rank, you could redirect the output of the grep command to a file, then sort
the file in a two step process, like this:

grep Heinlein scifi_list.txt > heinlein.out
sort -k 2 -n heinlein.out

However, the pipe allows you to do this in one step:

grep Heinlein scifi_list.txt | sort -k 2 -n

which yields

1961 6 Heinlein, Robert A Stranger in a Strange Land
1959 12 Heinlein, Robert A Starship Troopers
1966 17 Heinlein, Robert A The Moon is a Harsh Mistress
1973 41 Heinlein, Robert A Time Enough For Love
1956 80 Heinlein, Robert A The Door Into Summer
1957 84 Heinlein, Robert A Citizen Of the Galaxy
1951 88 Heinlein, Robert A The Puppet Masters
1958 93 Heinlein, Robert A Have Space-Suit - Will Travel

We “piped” the output of the grep command to the sort command, (where we used the switches “-k 2 -n” in order to
sort on the second “k“olumn in numerical order).

We can even chain pipes together:

grep Heinlein scifi_list.txt | sort -k 2 -n | wc

produces simply

8 73 402

The output of the sorted grep contains 8 lines, 73 words, 402 bytes.

112 Chapter 3. Basic Unix Skills

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

3.20 Command Summary

Data Flow Meaning
command > file redirect output to a file (catch/save output of command)
command >> file catch and append output of command to the end of a file
command < file read input for a command from a file
cmd1 | cmd2 pipe the output of cmd1 to the input of cmd2

3.21 Homework

Homework 3 is here

3.20. Command Summary 113

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/hw3.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

114 Chapter 3. Basic Unix Skills

CHAPTER

FOUR

THE TEXT EDITOR

4.1 The Text Editor

The first thing we will need to build our scientific computing environment is a text editor.

In fact you already have one on your computer–all computers have a default editor that will save files as basic ASCII
text. ASCII (American Standard Code for Information Interchange), pronounced [ass’ key], is a simple character
encoding format based on the English alphabet. It basically lets you encode the keyboard characters plus some special
characters like a command to jump to the beginning of a new line (Enter or Return on your keyboad).

The printed ASCII characters (those that get printed to your screen, as opposed to control keys like CTRL-D or ESC),
are:

!"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
`abcdefghijklmnopqrstuvwxyz{|}~

The binary equivalents are of the alphabetical characters are here:

Letter ASCII Code Binary Letter ASCII Code Binary
a 097 01100001 A 065 01000001
b 098 01100010 B 066 01000010
c 099 01100011 C 067 01000011
d 100 01100100 D 068 01000100
e 101 01100101 E 069 01000101
f 102 01100110 F 070 01000110
g 103 01100111 G 071 01000111
h 104 01101000 H 072 01001000
i 105 01101001 I 073 01001001
j 106 01101010 J 074 01001010
k 107 01101011 K 075 01001011
l 108 01101100 L 076 01001100
m 109 01101101 M 077 01001101
n 110 01101110 N 078 01001110
o 111 01101111 O 079 01001111
p 112 01110000 P 080 01010000
q 113 01110001 Q 081 01010001
r 114 01110010 R 082 01010010
s 115 01110011 S 083 01010011
t 116 01110100 T 084 01010100
u 117 01110101 U 085 01010101
v 118 01110110 V 086 01010110
w 119 01110111 W 087 01010111
x 120 01111000 X 088 01011000

115

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

y 121 01111001 Y 089 01011001
z 122 01111010 Z 090 01011010

There are a few others for a TAB, New Line, and “Alarm” (tell the computer to make a noise or flash). Here are a few
of those:

ASCII Code Binary Character Description
0 00000000 NUL null
1 00000001 SOH start of header
2 00000010 STX start of text
3 00000011 ETX end of text
4 00000100 EOT end of transmission
5 00000101 ENQ enquiry
6 00000110 ACK acknowledge
7 00000111 BEL bell
8 00001000 BS backspace
9 00001001 HT horizontal tab

...

When interacting with your computer, you will need to create text files containing data, programs, scripts (short
programs that are not compiled), and LaTeX files. We’ll learn more about each of these later.

A Text editor is very different from a WYSIWYG editor (pronounced [WIZ’ ee wig]; short for What You See Is
What You Get) like Microsoft Word. WYSIWYG editors are for the creation of documents that will be printed (or
faxed or emailed) where layout, font, and formatting is essential–as in business documents. WYSIWYG files are huge,
even if they contain only a few lines of text, since they keep formatting info, change history, and many other things.

ASCII (also called “plain text”) files will often be read by another program–and this is their true beauty This could
be a list of numbers to be plotted, or the source code (the program text) to be compiled into an executable program file
(like an .exe file). You might use your computer very professionally in a business office for many years without using
a text editor, but for scientific computing and programming, we can’t do much without a text editor.

4.1.1 The Default Text Editor

If you are working on a computer with the Windows operating system, you already have a default text editor: Notepad
which you can find from Start->Programs->Accessories->Notepad. This program will create ASCII text files. By
default, Notepad saves files with the extension .txt. You can change this by adding your own extension when saving
your file (call it something like filename.dat).

If you are using OSX on a Mac, the default editor is TextEdit. You should be able to find it in Applications.

Try Notepad/TextEdit now.

• Open the Notepad (PC) or TextEdit (Mac) program, as described above

• Type some text into the editor

• Save the file (onto your desktop or in your home dir. Name it anything you like.)

4.1.2 The Unix Default Editor

Under Unix the default editor is vi, although most unix systems also have emacs and others (Linux often includes
nano, KWrite, and others).

The first one mentioned, vi, is short for Visual editor and dates from 1976. This editor has two different modes,
one for adding text and another for moving around, copying/pasting, search/replace, etc. Since it was developed at a
time when using Unix meant interacting with a mainframe only via a terminal window and keyboard (there were no

116 Chapter 4. The Text Editor

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

computer mice in 1976!), both of these modes had to use characters on the keypad. In 1976, there wasn’t even that
much uniformity as to the binary sequence sent by an arrow key–if it even existed on your computer.

In the 1980s another text editor became popular: Emacs. Emacs is extremely powerful with many features, although
some say it has a steep learning curve. The devotion of Emacs users to Emacs and Vi users to Vi has spawned a
fundamental rivalry in the unix community. Vi and Emacs are the two major sides in the Editor Wars which raged for
some 35 years between unix geeks, and has only subsided when memory and bandwidth became so very cheap.

I myself, use The One True Editor: Emacs. To get a sense of the features and comparisons of the most popular text
editors, open the following link:

• Comparison of Text Editor Features

Impressive, eh? As you can see, there are many... This site lists the editors by popularity.

The top two TEXT editors are: Vim (a modern version of vi)and Emacs. Over the years, I’ve used many, and they are
all good. Let’s look at some features that we will need.

An essential feature for remote computing (working on a computer that is not in you lap or under your desk) is that
they can be used in text mode over a network connection, such as a Terminal window that is connected to a computer
on the other side of the world. If you want to edit a file on that remote machine, you will want to use an efficient editor
which has hi functionality using only text based commands. Both Vim and Emacs are text based. The alternative to
this is using a GUI (Graphical User Interface) editor that has little icons for buttons and opens its own window(s).

While these editors are very nice and have lots of features, they use a lot of computing power to update the windows,
respond to the mouse clicks, highlight text, etc. Transmitting these features over the network can be quite demanding.
Consider that anytime a character is written to the window, the entire window is usually repainted on the screen. When
the editor window is running on you own PC, you don’t notice this. But when each update has to go across the country
and back, you do.

Windows users may like Notepad++ (‘http://notepad-plus-plus.org/‘_) is such an editor. It runs only in GUI mode,
and only under Windows, but is quite nice. TextWrangler (‘http://www.barebones.com/products/textwrangler/‘_)
is a similarly good GUI editor for Mac users.

Note that if you REALLY must have a GUI editor, you can set these editors to retrieve the remote file you wish to edit
via the network, edit it locally on your laptop/desktop, then put the new version of the file back on the remote machine.
But that takes a bit more work...

Other nice features we expect in a powerful editor are syntax-color-coded text, modes for different types of files (C++,
LaTeX, Python, HTML, etc.), and language-specific keyboard shortcuts for common tasks (like commenting regions,
or inserting URLs).

4.1.3 Vi

• Open a Terminal window

• At the prompt, type: vi

You will see this (“splash”) screen:

~
~
~
~ VIM - Vi IMproved
~
~ version 7.2.411
~ by Bram Moolenaar et al.
~ Modified by <bugzilla@redhat.com>
~ Vim is open source and freely distributable
~

4.1. The Text Editor 117

http://www.slate.com/articles/technology/bitwise/2014/05/oldest_software_rivalry_emacs_and_vi_two_text_editors_used_by_programmers.html
http://en.wikipedia.org/wiki/Editor_war
http://en.wikipedia.org/wiki/Comparison_of_text_editors
http://sixrevisions.com/web-development/the-15-most-popular-text-editors-for-developers/

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

~ Help poor children in Uganda!
~ type :help iccf<Enter> for information
~
~ type :q<Enter> to exit
~ type :help<Enter> or <F1> for on-line help
~ type :help version7<Enter> for version info
~
~

Recall that there are two modes that vi can be in:

• Command mode, and

• Insert mode

Vi opens in Command mode. So, if you type some key strokes they probably won’t do anything–until–you type one
(of several keys) that puts you into INSERT mode. Then the keystroke following that will put text in your document.

Try this:

In the open vi program, type hello

Nothing will happen until you type “o”, at which point the cursor drops one line (and the splash screen disappears),
and the word “– INSERT –” appears at the bottom of the screen.

In COMMAND mode, without any text in the document, the first four characters: h-e-l-l don’t do anything. (if there
was text in the window, h moves left, l moves right, and e would move to the end of the current word).

However, the “o” character in h-e-l-l-o tells vi to open a new line for text below the current line, and go into INSERT
mode (That’s why it drops down one line). In INSERT mode, what you type is recorded.

Type your name and address.

Now type, ESC to exit INSERT mode and go back to COMMAND mode.

In COMMAND mode, with the UP arrow, move the cursor up to the first line.

Type i to go into INSERT mode. Now what ever you type will be inserted into your document.

Type your name on the first line, and your home address on the next 2 (or 3) lines. While you are in INSERT mode,
vi acts like a normal text editor, like Notepad. You type and text appears, you can use the arrow keys, backspace, and
delete to move around.

To Save (or “Write”) your newly written text file, you must “Exit INSERT mode” by typing ESC, then hit the colon
key “:”. A colon will appear at the bottom left of the window. Vi is now waiting for you to enter some command
keystrokes.

Type w myaddress.txt (note the SPACE between the “w” and the filename “myaddress.txt”)

This means “write the contents of the screen buffer to a file called “myaddress.txt”.

Now, to Quit vi, we must be in COMMAND mode, which we still are. We then type: :q. Since we just wrote our file
to disk, there are no unsaved changes and vi will quit. If we need to Quit without saving, we can do a forced quit by
adding a ! after the q, like this: :q!

Now that you have quit vi, list your directory contents and see if your new file myaddress.txt is there.

If so, type vi myaddress.txt at the prompt, and open your file for further editting. Use what you have learned above
to change your home address to your campus address. Remember the fundamental vi rule: type i to go into INSERT
mode, and ESC to go back to COMMAND mode. When you are done, save your file.

This ends your introduction to Vi. If you want to be a hacker you will have to learn how to use Vi, which you can do
at many sites online. Here is a good one, for example.

118 Chapter 4. The Text Editor

http://staff.washington.edu/rells/R110/

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Note: If you typed something in vi, or get confused about the modes and don’t know what’s going on, you can always
EXIT vi by typing these keys: ESC : q !.

• ESC always puts you back into COMMAND mode,

• : prepares vi to accept commands,

• q means Quit,

• and ! means “force quit even if changes have not been saved”.

4.1.4 Emacs

As I said, I use Emacs as my text editor, partly because I am old and have had too many years of practice with emacs
to switch. Another reason I am recommend it is that it’s Free ! If you look at the comparison list of editors, above,
you will notice that many of them have a cost. I have tried to only use free software for this course. In fact Emacs was
one of the first applications developed by‘The Free Software Foundation <http://www.fsf.org/>‘_, the people behind
GNU software, which you may have heard of. Cygwin, Linux, and much of the Unix world is built on the work of the
FSF. Check them out!

So, let’s fire up Emacs.

Open a Terminal

There are two ways to start Emacs.

When running emacs over a network connection, or for a quick edit, use the Terminal (text) mode of emacs; at the
prompt, type:

emacs -nw

The -nw stands for “No Window”.

You should see something like this:

4.1. The Text Editor 119

http://www.fsf.org/

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

There are four areas to the emacs screen:

• The Tool Bar at the top:

File Edit Options Buffers Tools Help

It’s not used in terminal mode , but is still there.

• The Buffer Area, the large window area in the middle of the screen.

Welcome to GNU Emacs, one component of the GNU/Linux operating system.

Get help C-h (Hold down CTRL and press h)
Emacs manual C-h r Browse manuals C-h i
Emacs tutorial C-h t Undo changes C-x u
Buy manuals C-h RET Exit Emacs C-x C-c
Activate menubar M-`
(`C-' means use the CTRL key. `M-' means use the Meta (or Alt) key.
If you have no Meta key, you may instead type ESC followed by the character.)
Useful tasks:
Visit New File Open Home Directory
Customize Startup Open *scratch* buffer

GNU Emacs 24.3.1 (x86_64-redhat-linux-gnu, GTK+ Version 3.9.10)
of 2013-08-14 on buildvm-17.phx2.fedoraproject.org

Copyright (C) 2013 Free Software Foundation, Inc.

GNU Emacs comes with ABSOLUTELY NO WARRANTY; type C-h C-w for full details.
Emacs is Free Software--Free as in Freedom--so you can redistribute copies

120 Chapter 4. The Text Editor

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

of Emacs and modify it; type C-h C-c to see the conditions.
Type C-h C-o for information on getting the latest version.

The buffer has some help info at this point. This is where you edit your files. Each file that you are editing is called a
buffer (it’s really a part of memory, which becomes a file on your disk only when you write (or Save) the Buffer. You
can have many buffers open at once, i.e. you can be editing many files in one emacs session.

• The Mode Line:

-UUU:%%--F1 *GNU Emacs* All L1 (Fundamental) -------------------------------

This is a highlighted bar of text that tells you information about the buffer you are currently editing. We’ll learn more
about what these phrases mean shortly. Finally, there is a line of text below the Mode Line

• The Mini-Buffer

For information about GNU Emacs and the GNU system, type C-h C-a.

This is where you communiate with emacs. Emacs will put error or other messages here for you (such as the ” For
more information... ” phrase when emacs starts up). You also can enter commands here.

Ususally you would start emacs (and vi for that matter) by giving it the name of the file you want to edit, which is
opened in the buffer area. If there is no file with the name you gave it, emacs will open a new buffer with the name of
that file.

So, let’s Quit emacs by typing:

CTRL-x CTRL-c

In other words, hold the *CTRL key down and type x then c. Yup, we’re going to be doing a lot of stuff like that.

Emacs uses CTRL and ESC keys as modifiers to the rest of the alphabet keys, in order to give a very rich command
set available to the user through a simple text based Terminal. Later, we’ll use the GUI version of emacs, and you can
go back to File->Save, etc. But for now, we are going to learn how powerful the keyboard can be.

So, let’s start emacs again with a filename. At the prompt in your Terminal, type:

emacs -nw fox.txt

Now, the buffer region is empty, the mode-line says mothers.txt, and the mini-buffer says (New File). Emacs is ready
for you to type something profound.

Type:

The quick brown fox
jumps over the lazy dog.

Notice also that two **‘s appear in the Mode Line:

----: ******-F1 *scratch* (Lisp Interaction)--L1--All-----------------------

These two asterics signify that the buffer has been modified . In order to save these modifications, you will need to
save the buffer to a file.

Emacs commands, such as save-buffer, kill-emacs (quit), are entered by typing either:

• a CTRL-character sequence (abreviated C-char), or

• a Meta (or ESC)-character sequence (abreviated M-char).

4.1. The Text Editor 121

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Let’s finish the example we have open.

So save this buffer to a file, we type the the keyboard shortcut for the “save-buffer” command:

C-x C-s

Type this: CTRL-x then CTRL-s. I’ve done this so often, I just hold the CTRL button with my left pinky finkger
down and press “x” then “s”.

This is equivalent the usual GUI menu File->Save on most editors.

The Mini-buffer respondes with

Wrote /home/jhetrick/fox.txt

and the Mode-line changes to

----:---F1 fox.txt (Text)--L1--All---------------------------------

The Mode-line now displays the name of the file which is connected to this buffer (fox.txt), and the “modified”
asterisks (**) are gone since our changes have been saved.

We can continue to edit the file. Go ahead and add your address to the buffer . Once you have your address in the
buffer, move around with the arrow keys. Try using your ” Delete, Backspace, Home, and End ” keys . You can
see that emacs acts pretty much like Notepad . Aside from the text based commands like C-x C-s, it’s pretty intuitive
(at least to me!). Once your have your correct address back, save your changes with ” C-x C-s ” again.

To Quit emacs, remember that we have to type a text sequence. Do: C-x C-c By now I’m assuming you understand
what ” C-x C-c” means (CTRL-x then CTRL-c). You should have your xterm prompt back. Do an ls to see that your
file is there. Go ahead and cat it which will print the contents of your file to the screen so you can see that you indeed
did just edit a text file. Two more things to try: At your xterm prompt, type emacs -nw YOURLASTNAME.txt
Notice that this opens your file for editing. Quit Emacs with C-x C-c .

Now, open emacs without telling it which file to open . emacs -nw Now you can tell emacs to open your YOURLAST-
NAME.txt ** file by issuing the command: **C-x C-f Emacs responds by asking you the name for the file you wish
it to find in the mini-buffer:

Find file: ~/

Type YOURLASTNAME.txt and hit ENTER. Emacs will open your file. Quit emacs again with C-x C-c.

You now know the most basic skills of using emacs.

You can open a file, edit it, and save it, pretty much the same as you can do with Notepad.

Let’s summarize:

Command Meaning
At Terminal prompt: emacs -nw file Open file in emacs
In Emacs: C-x C-f Find (Open) File for editting
In Emacs: C-x C-s Save Buffer to file on disk
In Emacs: C-x C-c Quit Emacs and Exit

4.2 Learning More About Emacs

Even though we just saw these commands on the previous page (that may have been a few days ago), it’s worth
repeating these most basic commands here. With these you can write/edit a file and save it. In addition you would use
the arrow keys to move around, plus the Backspace and Delete keys.

122 Chapter 4. The Text Editor

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Command Meaning
At Terminal prompt: emacs -nw file Open file in emacs
In Emacs: C-x C-f Find (Open) File for editting
In Emacs: C-x C-s Save Buffer to file on disk
In Emacs: C-x C-c Quit Emacs and Exit

Of course we’d like a little more functionality.

4.2.1 The GUI version of Emacs

Let’s bring Emacs into the 1990’s.

On the previous pages I had you start emacs with the command: emacs -nw which opens emacs in a text-mode terminal
window (not a GUI window). Now let’s open emacs in GUI-mode. Open a terminal and at the prompt type:

emacs

Just emacs: NO -nw switch!

The naked emacs command should open an emacs window on your screen that looks like this:

4.2. Learning More About Emacs 123

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Notice that GUI version has the same four areas as the text mode version:

• the Toolbar

• the Buffer Area

• the Mode Line

• the Mini-Buffer

Can you identify them all? In addition you have icons in the Toolbar.

124 Chapter 4. The Text Editor

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Let’s open a file to play with. We’re going to open it a couple of different ways.

First, click on the File menu in the Toolbar.

Click on ” Open File...”.

This opens the File browser window.

4.2. Learning More About Emacs 125

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Compare this with the command line directory listing, using your “l” (ell) alias for ls -F.

Going back to the Open File window, you see your directories and any normal files there.

But suppose you needed to edit your .bashrc file, which is there but not listed because its a Hidden unix file–it starts
with a . (dot). If you need to see all the files in a directory, including Hidden files, ...simply click the Hidden Files
button on the Open File explorer window.

126 Chapter 4. The Text Editor

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

For the moment, Click Cancel and close the Open File explorer window. We’ll come back to it in a minute.

The Emacs window should still be open. This time (with the mouse somewhere in the emacs window), type:

C-x C-f (Ctrl-x Ctrl-f).

In mini-buffer at the bottom, you will see: Find file: ~/

4.2. Learning More About Emacs 127

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Recall ~/ is an alias for YOUR HOME DIRECTORY, which in my case is /home/jhetrick/.

Notice also that the cursor is waiting for you to type a file name that would be in your home directory. You could, for
example, type the path to a file that is in a subdirectory by typing the path to the file.

For example, with the Find file: ~/ prompt still showing in the mini-buffer, type unixplay/ and hit the TAB
button, twice. The TAB tells emacs to try to complete the file name for you. Since there are many options in the
~/unixplay/ directory, emacs displays them by opening another buffer:

You can click on the file you want in that window, and emacs will open it. You can even click on one of the subdirec-
tories in the ~/unixplay/ directory.

For example, Click on dirTWO/, emacs will add dirTWO/ to the path in the mini-buffer.

Find file: ~/unixplay/dirTWO/

If you hit TAB again (twice), you can play the same game in the ~/unixplay/dirTWO/ directory. Emacs will
show you all the files (and subdirectories) there and you can choose one of those to edit.

At this point, if you’ve been following along, the mini-buffer should be waiting for you to choose a file in the
~/unixplay/dirTWO/ directory.

Before we open a file, let’s Abort this Find File process. This is a very useful thing to know how to do. Suppose
you type the wrong command sequence, or decide to do something different, you can always ABORT the current
command by typing C-g (Ctrl-g).

In the Emacs window, type C-g (Ctrl-g).

The mini-buffer says “Quit”. This is because we Aborted the command to find a file.

In general, you can always abort whatever you are doing (or were trying to do), by typing C-g.

You can also Abort an action by clicking on the Red (X) in the Toolbar.

Note: To Abort a command, type: C-g (Ctrl-g), or the Red (X) in the Toolbar.

128 Chapter 4. The Text Editor

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Finally, you can open the file using the method you already know!–the text sequence mode we used before. This is the
method to use when connected to a computer over the network. In the emacs window, type:

C-x C-f

Same thing: you get “Find File:” in the mini-buffer.

This time let’s open a file.

If you type the name of a file which does not exist, the buffer is renamed to this name, and the words (New File)
appears in the mini-buffer.

Go ahead and type the name of a new file, something like:

zzz

Do you see the (New File) text in the mini-buffer?

Now type some characters in the buffer window. Anything will do.

OK. Let’s NOT save this file. We can Kill the buffer by clicking on the (X) in the Tool Icons.

This brings up a dialog window that asks you: Buffer ... modified; kill anyway? [Yes]/[No]

Click [No] (i.e. don’t kill it)

Now let’s do the same action: kill the buffer, using text-based commands. In the emacs window, where you still have
the new zzz buffer, type:

C-x k (Ctrl-x, followed by typing the k key)

The mini-buffer should say: Kill buffer: (default zzz)

type ENTER

The mini-buffer will respond with: Buffer zzz modified; kill anyway? (yes or no)

With the cursor at the right end of the mini-buffer (click on the end of this text if it’s not there already).

type: yes*

The zzz buffer should disappear.

4.2. Learning More About Emacs 129

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Last thing: let’s open a file, edit, and save it.

At the terminal prompt, type

emacs testfile.txt

(I always give my files a suffix .txt when they are just text)

This should open emacs with two screens. In the top is your new file, testfile.txt. In the lower window is the
Welcome to *EMACS screen.

130 Chapter 4. The Text Editor

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

You don’t need the Welcome Screen any more, so click on the Checkbox which says “Never show it again”,

then click the line of text to its left, which says “Dismiss this startup screen”. The Welcome screen will go away, and
never come back.

Click in the upper window, and type your name.

Before you Save the ‘‘testfile.txt‘‘ file, notice that after you typed your name, the *mode-line, where emacs shows you
useful information, there are two new **‘s. This means that the buffer is modified–there are changes that need to
be saved.

Now, to Save this “buffer” to a file, you surely know to Click File->Save in the Tool Bar.

If you do so, nothing happens, except those **‘s disappear.

Recall: To do the same with a Text Mode command, the command is: C-x C-s (Ctrl-x Ctrl-s).

At this point you can use either the intuitive GUI (menu/mouse) mode to click on buttons, or the Text mode keyboard
commands, to open, modify, and save

4.2. Learning More About Emacs 131

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Since there are senior Computer Science students taking this course along side freshmen Physics students, let me
through out a little candy for those already familiar with remote logins and ssh (don’t worry freshmen, we’ll learn
about those in Chapter 10).

Edit a file on a remote unix machine

Suppose you have an account on another machine called: secrets.nca.gov. From your laptop, you can do:
C-x C-f (to open a file)
Then, erase (backspace over) the ~/ in the mini-buffer and put for the filename:
/secrets.nca.gov:missilecodes.txt
Note the beginning “/” (without the usual ~), and the “:” separating the filename.
This tells emacs to open the remote file for editting locally. Emacs will open an sftp connection, grab your file
(asking for your remote password, of course) and open it in a buffer on your laptop here. When you save it, with:
C-x C-s it goes out through the network and puts the new version back “over there”.

4.2.2 GUI v. Text

Let’s summarize, the GUI and Text-mode methods.

To open a file (find-file)
GUI (menu/mouse) Mode Click: File->Open File
Text Mode type: C-x C-f

To kill a buffer (kill-buffer)
GUI (menu/mouse) Mode Click: File->Close
Text Mode type C-x C-f

To save a buffer (save-buffer)
GUI (menu/mouse) Mode Click: File->Save
Text Mode type C-x C-s

So now let’s step up the pace a bit.

Your emacs window should still be open. Go ahead and close it (quit). Remember how?

Now cd to your home dir and make a new subdirectory called editplay then cd into it.

cd editplay.

132 Chapter 4. The Text Editor

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/remote.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Now save the following file into this directory: stairway.txt

Remember, you can download the file with the curl command, by copying and pasting this text to the command line:

curl -O http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/stairway.txt

(I know I could have included this file in the unixplay.tar.gz bundle, but I wanted to remind you about the very
useful curl command. Just remember you need the -O (minus capital Oh) switch to save the file to your current
directory)

Open it in emacs (use the GUI version of emacs), by typing

emacs stairway.txt

4.2.3 Movement

Let’s start by summarizing movement commands.

In graphical GUI mode, things work pretty much as you would expect from any other word processors like MS Word,
Notepad, etc.

Most normal movement cammands work:

• Right, Left, Up, Down Arrows

• Page Up, Page Down

• Home, End

• and the Scroll Bar on the left side

Go ahead and try these.

In Text-mode, movement can be achieved with the same keys usually, but sometimes on a remote machine the termi-
nal emulation can be strange. For this reason, emacs has some text-based key strokes which implement movement
commands. These are (recall: C- means Ctrl-, and M- means ESC then key)

Emacs Text-mode Movement commands
C-a Beginning of line (Home)
C-e End of line (End)
M-f Forward one whole word
M-b Back one word
M-e Next sentence
M-a Previous sentence
C-v Next screen
M-v Previous screen
M-< Beginning of buffer
M-> End of buffer

4.2. Learning More About Emacs 133

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/stairway.txt

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Notice that the GUI version of Emacs (the window you have open) recognizes all the Text-Based commands as well.
In fact, when I am in GUI mode, I still use the text-based versions of most commands. It’s a lot faster–your hands
don’t have to leave the keyboard to grab the mouse, so you can really learn to type documents fast.

Try all of the text-based movement commands above now on the stairway.txt file.

4.2.4 Cutting and Pasting

In GUI-mode

In your open “stairway.txt” buffer,

Click/drag your mouse in the text to highlight a region of text as shown below.

(pick your favorite stanza of the song)

In Emacs lingo this highlighted area is called the Region. We’ll come back to this concept in a minute.

With the region still highlighted, click the Edit menu item on the Toolbar, then click Cut

The highlighted region should disappear. This is the same as typing CTRL-x in MS Word. You have “Cut” the region
of text, and at the same time copied the region to the Clipboard.

Now go to the Toolbar and click Edit->Paste. This should put back the text you just “Cut”. It will be Pasted at the
place where the cursor is located. Notice too that under Edit you also have the option to Undo your changes.

Try this: Highlight some text again Cut the text by doing: Edit->Cut Undo your “Cut” by clicking: Edit->Undo This
should put back the text you Cut.

134 Chapter 4. The Text Editor

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

In Text-mode

Now let’s try this in Text mode.

This is how you cut/copy text when you are editing using emacs on a remote machine via a text terminal, or sometimes
in GUI mode when you don’t want to grab the mouse.

In your open emacs window, using the arrow keys, move the cursor to the beginning of a stanza of the song. Now,
Set the Mark, by typing

C-spacebar (Ctrl-SPACEBAR).

The words Mark set will appear in the mini-buffer. The Region is now the area between the Mark and the Cursor .

Having set the Mark at the beginning of the stanza (when you typed C-spacebar), move the cursor to end of the
stanza, using the arrow keys. Now type

C-w (cut-region)

This is the text-mode key sequence that does the “Cut”.

Similarly, the text-mode key sequence to “Copy” is

M-w (copy-region).

The text-mode key sequence to Undo is

C-x u (undo)

Try this now.

Does the text you “Cut” come back (i.e. was your “Cut” undone)?

Pasting

In GUI mode, pasting the text you just cut is easy. Highlight the text, click Edit->Cut or Edit->Copy, put the cursor
where you want to put the text, and click Edit->Paste. Pretty easy.

In Text-Mode , the Paste command is

C-y (“y” for yank, as in “yank it out of the clipboard, and put it here).

Go back and “Cut” a stanza again:

To “Paste” the text, move the cursor to the place you want to paste it, then type:

C-y

This should “Paste” the text you just “Cut” at that point.

Kill a Whole Line of Text

Another very useful thing to do is to kill a single line of text.

4.2. Learning More About Emacs 135

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Move your cursor to the beginning of a line, although you actually can do this anyhwere in the buffer. Type:

C-k

This will kill all the text from the cursor to the end of the line. Try it on the stairway.txt file.

Put the cursor at the beginning (or the middle) of a line of text.

Type:

C-k

Notice that this does not delete the empty line, but merely removes the text. If you also want to also delete the blank
line, hit C-k again. So, typing C-k C-k kills both the line of text, and moves the text below, up by one line.

The text that was removed is now in the Clipboard (or “yank buffer”), and so if you want to place it somewhere in
your document, you simply move the cursor to that point, and type C-y.

If you did the double C-k C-k, then the blank line (actually the trailing newline character) is also saved in the Clip-
board. So, if you paste (yank) the text into a new location, it will now move the rest of the text down one line.

You will need to practice a little, so go ahead and hack up the stairway.txt file by cutting and pasting lines, parts
of lines, etc. Use both the single C-k and the double C-k C-k to get used to the difference.

Let’s summarize Cutting and Pasting:

Cut Text (kill-region)
GUI (menu/mouse) Mode Highlight text; Edit->Cut
Text Mode Set Region with Mark and Cursor; type: C-w

Copy Text (copy-region)
GUI (menu/mouse) Mode Highlight text; Edit->Copy
Text Mode Set Region with Mark and Cursor; type: M-w

136 Chapter 4. The Text Editor

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Paste Text (yank)
GUI (menu/mouse) Mode Highlight text; Edit->Paste
Text Mode Place Cursor at insertion point; type: C-y

4.3 Intermediate Emacs

Now that you’ve had a little introduction to Emacs and some of its keystrokes, you may be able to appreciate this
comic.

You haven’t gotten much chance to experience the true power of emacs yet, though.

Unfortunately we won’t really be firing up the warp engines; there’s plenty online if you want to delve deeper. Please
have a look at this page:

A Tour of Emacs

You’ll notice that we’ve talked about several of the commands you see there. But there is MUCH more. Emacs has a
built-in programming language which let’s you write functions and programs which you can bind to keystrokes.

Let’s look at just a few more features before we leave our introduction to Emacs.

4.3.1 Customization: The .emacs Startup File

When Emacs starts, it looks for a file in your home directory called hidden file called: .emacs. This file contains
commands written in the Emacs programming language called *Lisp* (more specifically it is Emacs Lisp –a variation
of Lisp).

You can customize Emacs to alter its behavior to your liking. For example, when Emacs started up before, we clicked
on the line that said

Dismiss this startup screen

Actually that text was linked to a Lisp function which wrote the following text in your .emacs file.

4.3. Intermediate Emacs 137

http://www.gnu.org/software/emacs/tour/
http://en.wikipedia.org/wiki/Lisp_%28programming_language%29

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

'(inhibit-startup-message t)

Open a shell window (if you don’t have one open). Type ls -a (or better you alias la) for a listing of *all files. You
should see .emacs in the list.

Have a look at it with less. You should see something like this:

;; .emacs

(custom-set-variables
;; custom-set-variables was added by Custom.
;; If you edit it by hand, you could mess it up, so be careful.
;; Your init file should contain only one such instance.
;; If there is more than one, they won't work right.
'(diff-switches "-u")
'(inhibit-startup-screen t))

This may look a bit terrifying, but here’s a quick example of the kind of thing you can do.

Try this: Edit your .emacs file in Emacs (type: emacs .emacs), and add the following line to the bottom

(display-time)

Then save the .emacs config file, the next time you start emacs, you will see something like this:

The time is now displayed in the mode-line. Not going to change your life, but at least you see how the customizations
work. Consult the web for more customization ideas.

4.3.2 Find and Replace

Let’s do a simple task which might come up while you are editing. It might seem stupid, but it will lead us into a more
advanced topic.

Open Emacs by typing: emacs at the prompt.

With no filename (new or existing) give, Emacs start on a buffer called *scratch* that looks like this:

;; This buffer is for notes you don't want to save, and for Lisp evaluation.
;; If you want to create a file, visit that file with C-x C-f,
;; then enter the text in that file's own buffer.

-UUU:----F1 *scratch* All L5 (Lisp Interaction)----10:32AM 0.51--------
For information about GNU Emacs and the GNU system, type <f1> C-a.

If you want a clean new file in which to put text, you either need to supply a filename on the command line when you
start emacs, or “visit” the file by asking emacs to open a file with C-x C-f, and giving it a name.

138 Chapter 4. The Text Editor

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

So, let’s call this file, cat.txt. Copy the text fragment below into the buffer

The brown cat is fat
The fat cat is old
Therefore, the brown cat is old.

Let’s substitute “dog” for “cat” in this file. Easy enough.

Make sure the cursor is at the beginning of the file (on the first character of the first line). You do this so that everything
below will be subject to the Search/Replace.

Click on ” Edit->Replace->Replace String in the Toolbar.

This will make Emacs prompt you in the mini-buffer with the words: ‘‘Query replace: ‘‘.

In the mini-buffer type: cat then RETURN.

(Remember if anything goes wrong–you can always “Abort” with C-g or the Toolbar->Red (X), and then start over).

The mini-buffer responds with: ‘‘Query replace cat with: ‘‘

4.3. Intermediate Emacs 139

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Type: dog then RETURN

Emacs highlights the next instance of cat, and waits for your input.

Also the mini-buffer has changed to: Query replacing cat with dog: (? for help)

To accept this Replacement (i.e. cat->dog), just hit the Spacebar .

Emacs replaces cat with dog, jumps to the next cat and waits for your choice on the next occurance of cat:

This time, hit the “n” key (for No, do not replace this occurance) instead of Spacebar. Emacs will skip that replacement
and jump to the next cat.

Hit the Spacebar on this next one.

Emacs says: “Replaced 2 occurances”, which is what it did.

Now you should have the following text in your emacs buffer:

The brown dog is fat
The fat cat is old
Therefore, the brown dog is old.

140 Chapter 4. The Text Editor

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

The Text-mode way

Let’s change these “dogs” back to “cats”. But this time we’ll do it the Text-mode way.

Put the cursor at the beginning of the file.

You may have noticed when you clicked Edit-Replace-Replace String in the Toolbar, that to the right of the
menu item was the character string: M-%. This is the Text-mode key binding for the Query/Replace command
(query-replace).

Type: M-% (Yeah: ESC followed by “%”. Understand the XKCD comic better now?)

This initiates a “Query/Replace” command, just like you did above with your mouse in the GUI Toolbar.

This time, since you just previously did a Query/Replace, Emacs offers the same replacement strings as the “Default”.

If you just hit RETURN, you will accept the Default: replacing cat with dog again.

Since we skipped one cat (the “fat cat”) in the previous execise, there should be one cat left to transform to a dog.

Go ahead and hit RETURN. Emacs will jump to that occurance of cat and wait for you to hit Spacebar to accept
the swap.

Now, the text should be all about dogs.

Let’s practice one more time, and change all the dogs back to cats.

Put the cursor at the beginning of the text.

Type: M-%

In the mini-buffer, after “‘‘Query replace (Default: cat - >dog): ‘‘”, type dog

Then after “with:”, type cat

Emacs jumps to the first instance of “dog”.

This time, let’s just do them all at once–we don’t want to go through each instance of “dog” and answer with
“Spacebar” or “n”.

Simply type ! (an exclaimation symbol).

Emacs will change all occurances of “dog” to “cat” throughout the file.

4.3. Intermediate Emacs 141

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Let’s summarize Query/Replace:

Query (Search) / Replace (query-replace)
GUI (menu/mouse) Mode Edit->Replace->Replace String
Text Mode type: M-%

Replacement Choices
Spacebar to accept replacement
n to regect the change
! to accept all replacements
? for help

4.3.3 Regular Expression Matching

Try this; in Emacs, open a new file regexp.txt and copy the following text into it.

zzz1234
zyx2345
zzz5555
uuu9845

u6638v
v3948w
w8395x
x7730y
y2349z

Let’s suppose this is data from some log file, and you need to extract the numbers from each line.

You could do it by hand, i.e. move around and use Backspace and Delete. Yuk.

You could do six Query/Replace operations: replacing the characters u,v,w,x,y,z with empty replacement strings
(“”), i.e. just hit RETURN when asked for the Replace string:

"u" -> ""
"v" -> ""
...
"y" -> ""
"z" -> ""

That would do it, but it’s a lot of different Query/Replace operations. Yuk, again.

142 Chapter 4. The Text Editor

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

There’s a really cool way to do it using Regular Expressions: a match pattern rather than an exact match, like cat.

What we want to do is to remove all the alphabet characters (a-z) and leave the numbers (0-9). So we need a pattern
that will only match alphabet characters.

Make sure your cursor is at the top of the text window. Emacs will (for now) only search Forward for matches. So, if
you start the Query/Replace with the cursor at the end of the text, it will not find anything.

You can quickly move the cursor to the beginning of the buffer by typing: C-HOME (Ctrl-HOME). Similarly, C-END
takes you to the end of the buffer.

To invoke a Query/Replace using a Regular Expression (query-replace-regexp), we can either use

• the GUI method: Edit->Replace-Replace Regexp...

• or the Text-mode keyboard sequence: M-C-%

Yup: that’s ESC followed by Ctrl-%, including the SHIFT key needed to get the %. Unless you’re pretty dextrous,
just use the GUI way:

4.3. Intermediate Emacs 143

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

In the mini-buffer you see the prompt for the regexp, the Regular Expression (and because I didn’t close my Emacs
window since the last Query/Replace, you see the default: cat -> dog from before).

Emacs is now asking for a regexp–a PATTERN to use for matching.

Type: [a-z]+ then RETURN

The pattern is [a-z]+. Here’s what the parts mean:

• [] says to match any of the character inside the brackets

• a-z means any letter between a and z (if you wanted ANY letter, including CAPs you would do [A-Za-z])

• + means match one or more of “these”

When you hit RETURN above, Emacs is now waiting for you to supply the text to replace the thing matched (zzz, zxy,
etc.)

144 Chapter 4. The Text Editor

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

If you simply hit RETURN again, meaning replace with nothing (the empty string), Emacs highlights everything that
matches the regular expression pattern [a-z]+.

Hit the ! key, and voila!, all the letter characters are removed and your data is scrubbed clean.

Like many topics in this course, this example is just to let you know that Regular Expression Substitution can be very
useful. In addition to match a pattern, you can also save the match data and put it in the substituion string. For
example, with one Query/Replace/Regexp command you could make the following substitution:

zzz\ **1**\ abc -> filename\ **1**\ .dat
zyx\ **2**\ cba -> filename\ **2**\ .dat
qxz\ **3**\ bac -> filename\ **3**\ .dat

4.3. Intermediate Emacs 145

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

There are many online resources to learn about Emacs Regular Expressions. Try:

• http://www.emacswiki.org/emacs/RegularExpression

• http://www.gnu.org/software/emacs/tour/

Regular Expressions are used in most advanced programming languages, Python, PERL, Java, Javascript, PHP, etc. If
you continue to develop your scientific programming skills, you will encounter them again.

In the above discussion, I have tried to always include the emacs command for each action. If you look back at the
summaries, you see things like:

Action Emacs Command Keybinding
To open a file (find-file) C-x C-f
To kill a buffer (kill-buffer) C-x C-k
Paste Text (yank) C-y
...hundreds more

Here’s a small sample of some of the Emacs commands

Emacs: execute-extended-command (M-x)

If you happen to know the Emacs command for an action, you can have Emacs initiate that action by typing M-x, then
typing the command in the mini-buffer.

Let’s try it.

If you don’t have an open Emacs window running, start Emacs.

Now visit a file (“visit” is the Emacs lingo for openning a file in a buffer), using the usual keyboard way: type C-x C-f

Emacs responds with

Find file: ~/

in the mini-buffer. You could continue by typing the name of a file to edit, like stairway.txt.

However, we don’t need to edit the file. So, abort the action by typing C-g (or clicking the Red (X) in the toolbar.

146 Chapter 4. The Text Editor

http://www.emacswiki.org/emacs/RegularExpression
http://www.gnu.org/software/emacs/tour/
https://www.cs.rutgers.edu/LCSR-Computing/some-docs/emacs-chart.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Once you see Quit, indicating that the action was aborted, type:

M-x (ESC-x)

The mini-buffer shows simply

M-x

Emacs is waiting for you to type a command.

Type

find-file and hit RETURN

Emacs response with:

Find file: ~/

the same as it did above, when you typed C-x C-f. You’ve just learned yet another way to make Emacs do things, by
using the (execute-extended-command) command, which is bound to the keystrokes M-x.

A command I use often is the (goto-line) command. Suppose you programming and the compiler says you have
a bug in your code at line 972.

You can open the program file in Emacs and type M-x. Emacs responds with M-x in the mini-buffer. To this you type
goto-line and RETURN.

Emacs responds with: ‘‘Goto line: ‘‘

You type: 972 RETURN

and Emacs jumps to line 972 in your program file so that you can edit out your syntax error.

This would be written in “Emacs lingo” as M-x goto-line.

Of course there is a keyboard shortcut way to do this too: M-g g (ESC g g), but I find it easier to remember M-x
goto-line.

4.3.4 Emacs Windows and Buffers

Like most windowed (GUI) applications, you can resize the Emacs window by dragging the corner to make it bigger.
You can also open several files/buffers in one emacs session. This is useful when you want to cut and paste across
buffers, compare them, or use a host of other

4.3. Intermediate Emacs 147

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Emacs “modes” |

Here’s an example of a useful mode, do this:

M-x calendar

This should pop up a second buffer in a smaller window at the bottom of your emacs window. This buffer will be in
“Calendar mode” and thus responds to various keystrokes differently than a normal buffer. For example, if you click
on a date that is not today’s, the cursor moves there. Typing a period “.” takes the cursor back to today’s date. Just a
very small example of the behavior of Emacs modes.

Now how do you get rid of the calendar?

Well, you know how to kill a buffer: C-x k

If your cursor is in the calendar window and you type the above keystroke C-x k, you will delete the calendar buffer.
Go ahead and try it .

You may see another buffer in it’s place, like *messages* or another emacs’ “operating buffers”. You can kill that one
too with C-x k.

But what about the Window?

Even though you killed the buffer the window is still there.

To manipulate windows:

If your cursor is in the window you want to keep , you type

C-x 1 (think “keep this ONE”).

If you want to delete the window your cursor is in , you type

C-x 0 (think “this buffer is a ZERO”).

If you have two windows open, you can jump to the other window, by typing

C-x o (that’s an “oh” for “other”).

Or you can just click in it, which will take your cursor there as well. If you have only one window and want to split
your screen, type

C-x 2.

Note that in each window you can type C-x C-f to open a separate file in each. Of course you can also use the Toolbar.
Finally, you can drag the mode-line (the info-bar between buffers) up or down to make the windows bigger/smaller.

Let’s practice:

In Emacs, type C-x 2 to split the screen into two windows.

Drag the mode-line in the middle of the screen to resize the windows.

148 Chapter 4. The Text Editor

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Type C-x C-f to visit a file. Any file will do. In fact, when you get ‘‘Find File: ‘‘, hit the TAB key, twice.

This will list all the files in the current directory. You can click on one with the mouse. Hitting TAB again will scroll
to the next page if there are more files than fit on one screen.

Window control summary:

Action Keystrokes
Close this window C-x 0
Close all but this window C-x 1
Split current window into two C-x 2
Split window horizontally C-x 3
Jump to other window C-x o
Compare text in two windows M-x compare-windows

4.3.5 Dired

One last useful trick. You can open a directory in Emacs:

In an shell terminal, type emacs . (i.e. open “the current directory”).

This will open Emacs with a long listing of your files.

4.3. Intermediate Emacs 149

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

For more info on dired mode see: GNU Emacs Manual/Dired

This is dired mode (DIRectory EDit). There are many handy things you can do in dired mode.

For example, you can mark files for deletion by typing d with the cursor on the line for a each file. After marking a
number of files, typing x will “expunge” (delete) all marked files. Similarly, you can mark files to be moved, copied,
etc. in bulk. This is handy if you need to do operations on a large number of files.

Sure, you can do this easily by Ctrl-Clicking to mark a number of files in the GUI File Explorer, but if you are logged
into a machine on the other side of the world through a terminal window (i.e. you DON’T have GUI access), this can
be a very powerful way to do things that you take for granted in your desktop environment.

150 Chapter 4. The Text Editor

http://www.gnu.org/software/emacs/manual/html_node/emacs/Dired.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

4.3.6 Some Emacs Fun

People with too much time on their hands have written some pretty silly Emacs modes.

Open Emacs and try these (remember C-x k will kill the buffer):

M-x tetris (do you guys know this ancient game?)

M-x doctor

Read: Conway’s Game of Life. Then do

M-x life

This has given you a little taste of what Emacs can do.

4.4 Homework

Homework 4 is here

4.4. Homework 151

http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/hw4.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

152 Chapter 4. The Text Editor

CHAPTER

FIVE

SCIENTIFIC VISUALIZATION

5.1 Scientific Visualization

When doing science, you will often need to “look at some data”.

In fact, I almost always have a quick “Exploratory” look at whatever data I have for a project or experiment, so that
I can make sure that everything is making sense. If the temperature of your sample should go up as you increase the
magnetic field, then a quick look at your temperature v. magnetic field data will tell you if you have a loose wire,
before you spend a lot of time doing a complete experimental run.

Usually, you will be comparing recorded data with a theoretical prediction from a model in mathematical form.

For this you will need software to do scientific visualization. You are certainly already familiar with the simplest form
of data visualization, i.e. plotting or graphing x and y values on a Cartesian grid.

Let’s examine this idea of scientific visualization. Here is a definition taken from a tutorial on the website of the Geor-
gia Tech Scientific Visualization Laboratory an entire institute set up to help scientists and engineers with visualization
at GT.

Scientific visualization, sometimes referred to in shorthand as
SciVis, *is the representation of data graphically as a means of
gaining understanding and insight into the data. It is sometimes
referred to as visual data analysis. This allows the researcher to
gain insight into the system that is studied in ways previously
impossible.*

*It is important to differentiate between scientific visualization and
presentation graphics. Presentation graphics is primarily concerned
with the communication of information and results in ways that are
easily understood. In scientific visualization, we seek to understand
the data. However, often the two methods are intertwined.
Thus scientific visualization is a means of using graphical techniques
to allow the incredibly powerful, massively parallel processing, high
performance, neuro-optical wetware (your eyes and your brain), to look
for patterns in the data.*

I would also argue that once you have understood your data, the very next step is to present your results to others!
To do that, you take the graphics of your visualization studies, clean them up, add helpful guides and text, and make
presentation graphics for publication or oral presentations. So, the two are very closely related.

Shortly, we will get a tool which will serve us for both aspects.

153

http://www.cc.gatech.edu/scivis
http://www.cc.gatech.edu/scivis

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

5.1.1 Some Examples

First however, follow the link below to look at a few very impressive visualizations of some interesting data from the
Wall Street Journal’s Classroom page.

Look at these graphs

prepared by Karl Hartig, for the from the Wall Street Journal Classroom Edition.

These are best viewed in their PDF versions (because you can zoom in deeply), reached by clicking on the PDF icon
below the image on each page.

In particular, be sure to look at

• The Computer Power chart. This one documents the exponential rise in the processing power of computers in the
last decade (the so called, Moore’s Law). However, I find many of these presentations very thought provoking.

• The 3-D US Population graph shows the age people living in the last century, and how surges, like the Baby
Boomers born after WWII, move forward in time so that the overall age distribution of the population seems to
have “ridges” along diagonal lines.

• The 3-D plot of imigration shows that the current imigration wave is not unlike the one which occured in the
1800’s.

• Energy Production/Flow is quite important as well. Understanding how to make this more efficient is going to
become an essential part of 21st century engineering-physics.

One last example. Have a look at www.gapminder.org/world.

154 Chapter 5. Scientific Visualization

http://www.karlhartig.com/chart/chart.html
http://wsjclassroomedition.com
http://www.karlhartig.com/chart/mips.pdf
http://www.karlhartig.com/chart/demographic.pdf
http://www.karlhartig.com/chart/immigrate.pdf
http://www.karlhartig.com/chart/energyflow.pdf
http://www.gapminder.org/world

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

It plots average Life Expectancy versus average Income per Capita, for each country, for each year since 1800. In
addition the Population of each country is also shown by the size of the marker. You can run the graph as a movie,
letting time (the fourth dimension) run from 1800 to 2013.

Run the movie, by clicking Play .

Notice the worldwide downward vertical bumps in Life Expectancy in many countries during World War I from 1914-
1918, and from World War II from 1939-1945.

This data visualization tells an incredible story. The tool that presents it has been well crafted, allowing you to choose
several different quantities to plot so that you can explore many relationships.

Data visualization is a fundamental aspect of doing science.

5.1.2 SciVis Apps

There are many software applications for doing SciVis. A non-authoritative list is here. Have a look, and scroll to the
bottom of the page, to the See Also section.

Many of these are very powerful, and many are very expensive. Your computer may already have a software program
to graph data (Excel, for example, and other spreadsheets used in business computing will make simple graphs of
data).

5.1. Scientific Visualization 155

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Also, you may have had experience with other scientific analysis programs, such as Matlab, Maple, and others. These
are powerful and very good applications.

If you have experience with these, it will come in useful, since the more applications you are familiar with, the more
versitile you will be as a scientist or engineer. Furthermore, your career is likely to involve several employers as you
begin to build expertise in you area. Different employers will have different resources; Lawrence Livermore National
Laboratory, will have many different software packages, and your boss may not blink if you ask to buy Matlab at
$10,000 because that is what you are familiar with.

My philosophy in this course is to, as often as possible, provide you with free tools, which you can “take with you” to
your next position, and the one after that.

Linux provides a platform for many of these tools, and Gnuplot is one of the easiest to use.

Another popular choice is Matplotlib, which is part of the Python programming language. In a follow-up course to
this one, I plan to include a couple chapters on Matplotlib and other Python Scientific Visualization tools like Mayavi.
For now, though, we will use ‘Gnuplot >http://matplotlib.org>‘_.

5.1.3 Gnuplot

Note: “I can’t believe this is free!!!“—–Ben Rosenkrantz, B.S. Physics 2006

That pretty much sums it up. Gnuplot is an amazingly powerful plotting and data fitting program, capable of making
2 and 3-D plots such as y = f(x), and z = f(x,y). I use it for most of the data visualization in my research.

Getting Started with Gnuplot

First, let’s keep our gnuplot exercises in a separate directory.

Open an shell terminal, and make a subdirectory below your home dir called:

gp (you can give it a different name if you like).

Now cd to gp .

We’ll save Gnuplot files and data here.

We’ll use Gnuplot to display three primary types of plots, often on the same graph for comparison. These are:

• Builtin Mathematical Functions

• Numerical Data from a File

• User Defined Functions

We will also do

• data modelling and statistics

• publication/presentation graphics

156 Chapter 5. Scientific Visualization

http://matplotlib.org
http://matplotlib.org
http://matplotlib.org

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Now at the shell prompt, type

gnuplot

This will start the gnuplot program and you should see something like this on your screen:

G N U P L O T
Version 4.6 patchlevel 3 last modified 2013-04-12
Build System: Linux x86_64

Copyright (C) 1986-1993, 1998, 2004, 2007-2013
Thomas Williams, Colin Kelley and many others

gnuplot home: http://www.gnuplot.info
faq, bugs, etc: type "help FAQ"
immediate help: type "help" (plot window: hit 'h')

Terminal type set to 'wxt'
gnuplot>

This last line:

gnuplot>

is the Gnuplot prompt which is where you will type gnuplot commands.

Step One: Builtin Math Functions

In the examples below, be sure to type things exactly as they appear.

Any quotes (“) and commas (,), etc. are important!

At the gnuplot> prompt, type

plot x

and hit Enter.

You should see a graph window with a diagonal red line. This is a plot of the function f(x) = x.

Gnuplot’s default plotting range for x is [-10:10] (the range between x = -10 and x = +10).

You just plotted your first function.

Next, let’s add a quadratic function: f(x) = 2x2 − 3x+ 1

To do this, hit the UP arrow to bring back the previously entered command and now add the following, then press
Enter.

plot x, 2*x**2 - 3*x + 1

5.1. Scientific Visualization 157

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Does your plot look the same? (There should be a line and a parabola).

Notice how we entered

2x2 − 3x+ 1

as

2*x**2 - 3*x + 1.

We must explicitly tell gnuplot about multiplication with the * operator.

For the quadratic term, x2 , we use the notation x**2, where the “double star” notation: ** represents exponentiation.

For example, we could do x**0.5 for
√

(x) (the square root of x), however gnuplot has a builtin function: sqrt(x)
for this.

Also, we have two functions plotted, f(x) = x, a linear function f(x) = x, and f(x) = 2x2 − 3x+ 1, a quadratic
function.

They are both plotted on the same graph with one plot command, separating the two functions x and 2*x**2 -
3*x + 1 with a comma ,

plot x, 2*x**2 - 3*x + 1

We can plot several more functions on this same graph, we simply put commas between each function to be plotted.

158 Chapter 5. Scientific Visualization

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Note: When plotting 2-dimensional plots, the independent variable is (almost) always x.

I say “almost” because we can do parametric plots (a more advanced concept) where the independent variable is t.

But until we get there, remember: Gnuplot functions are always functions of x. sin(x/pi), exp(-x**2/4),
x**3 - x, etc.

Step 2: Plot Range

Let’s make the plot a bit easier to read. At the prompt, type:

set zeroaxis

Then use the UP arrow to recall your last plot command. Press Enter.

Now you should have dotted lines along the x = 0 and y = 0 axes. It’s a little easier to see where your functions are
located relative to the origin with these.

Now, let’s zoom in a bit. The interesting area of the graph is where the two functions intersect. Let’s narrow the plot
range.

5.1. Scientific Visualization 159

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Using the UP arrow, recall your previous plot command.

Now use the LEFT arrow to move the cursor to just after the plot command, and insert a range specifier [-0.5:2] as
shown below:

plot [-0.5:2] x, 2*x**2 - 3*x + 1

Notice what this does (press Enter to execute the plot command if you haven’t already). The graph should be
restricted to the area between x >= -0.5 and x <= 2.0 .

You can also limit the y range by adding a second range specifier for the y axis.

plot [-0.5:2][-0.5:2] x, 2*x**2 - 3*x + 1

which also limits the y range of the plot to lie between particular values.

160 Chapter 5. Scientific Visualization

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

The format for the range is

[Xmin :Xmax][Ymin :Ymax]

One can allow the x range to be free while specifying the y range with

[:][Ymin :Ymax]

and similarly

[Xmin :Xmax][:] to leave the y range free.

This however is equivalent to simply [Xmin :Xmax] by itself

Notice that even though the x-range and y-range are the same [-0.5:2], the plot is still rectangular. This is the
default for this system.

In order to get a Square plot, you type this:

set size square (RETURN)

then type replot (RETURN).

5.1. Scientific Visualization 161

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Replot always reproduces the last plot—it’s the same as using the UP arrow key to recall the last plot command typed,
and hitting RETURN.

set size square will produce a plot that looks like this.

To go back to your original aspect ratio, type:

set nosquare

then RETURN, then replot (then RETURN).

Step 3: Label the Graph

Still the graph needs more. Let’s notice some things.

There is a Key telling us which plotted lines correspond to which function.

162 Chapter 5. Scientific Visualization

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

The default Key is to draw short examples of the lines used and copy the function that you typed to plot beside the
associated line.

Notice that the key is run over by the plot lines. You can move the key to another place by typing

set key bottom right box
replot

The replot command re-draws the last plot command.

Notice where the Key is now, in a more conveniently viewable location, and it has a nice box around it.

You can get rid of the box if you don’t like it by typing

set key nobox
replot

5.1. Scientific Visualization 163

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

A graph also needs labels! If your high school teacher did not hammer this into you, let me do so. We can add these
with

set xlabel "x"
set ylabel "f(x)"
set title "My First Plot"
replot

This should label the x and y axes, and put a title above the the graph, as shown above. Verify that it does so.

164 Chapter 5. Scientific Visualization

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Also, notice that the words you want to appear in the labels must be enclosed in “”s.

Words such as these in labels, etc. are called strings (short for a string of characters), and all “strings” must be
enclosed in “”s. You can even clean up the Key a bit, by giving labels to the lines. Look at the Key as it is now in your
plot.

Call back your previous plot command with the UP arrow, and add the following title option to each function

plot [-0.5:2][-0.5:3] x title "linear", 2*x**2 - 3*x + 1 title "quadratic"

Do you see what that did to the Key?

5.1. Scientific Visualization 165

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

You can learn more about the possible settings for the Key by typing

help set key

This will display Help contents on the options and usage of the set key command.

gnuplot> help set key
The `set key` command enables a key (or legend) describing plots on a plot.

The contents of the key, i.e., the names given to each plotted data set and
function and samples of the lines and/or symbols used to represent them, are
determined by the `title` and `with` options of the {`s`}`plot` command.
Please see `plot title` and `plot with` for more information.

Syntax:
set key {on|off} {default}

{{inside | outside} | {lmargin | rmargin | tmargin | bmargin}
| {at <position>}} {left | right | center} {top | bottom | center}

{vertical | horizontal} {Left | Right}
{{no}opaque}
{{no}reverse} {{no}invert}
{samplen <sample_length>} {spacing <vertical_spacing>}
{width <width_increment>}
{height <height_increment>}
{{no}autotitle {columnheader}}

166 Chapter 5. Scientific Visualization

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

{title "<text>"} {{no}enhanced}
{font "<face>,<size>"} {textcolor <colorspec>}
{{no}box { {linestyle | ls <line_style>}

Press return for more:

Keep hitting the RETURN until you get the gnuplot> prompt back.

One more thing. Suppose we want a bit finer resolution on the x axis than small tics in steps of 0.5.

Suppose we wanted them every 0.25 instead. We can accomplish this by doing

set xtics 0.25

How do you think you would adjust the y tics?

At this point, your plot should look like this.

Summary

Let’s summarize what we’ve done so far. If you need to, go back though the above exercise and make sure you know
how to do each of these things.

• Gnuplot plots functions of x. In other words, our functions are

made from polynomials or builtin functions in which an x must appear. To see what I mean: Try plot y**2 , then try
plot x**2

5.1. Scientific Visualization 167

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

• We plotted two different functions on the same graph . We could

easily add more by separating each function by a comma.

• We learned the simplest mathematical operators: * for multiply,

and the exponent operator **, as well as + and -. Division is done with the forward slash: / as in 1/x**2 for

• We learned how to adjust the range of the plot, and add a zeroaxis .

• We learned how to move the Key and change its labels.

• We learned a little about the help command.

• We learned how to set labels for axes and give a title to the graph.

• We changed the resolution of the axes tics with set xtics 0.25 (we could set the y resolution with set ytics 0.1
for example).

5.2 More fun with Gnuplot

Let’s use gnuplot to plot some more mathematical functions. Certainly we’ll need more than just polynomials in x as
we used on the last page.

Gnuplot has many builtin math function which you can plot. Try the following plot.

If gnuplot is running on your computer, end it by typing quit at the prompt. Then start it again by typing gnuplot. This
is just to clear out the previous settings, and to show you how to get out when you are done.

Now that it’s running again, type:

gnuplot> plot exp(-x**2/20) * sin(x)

168 Chapter 5. Scientific Visualization

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

You may want to turn on the zero axis (remember how?). Later we’ll learn how to set that as the default behavior at
startup. The plot you just made is of the function

where you used the common exp() and sin() functions. A complete list of functions is here:

• Gnuplot Builtin Math Functions

Please have a look at these.

For example, gnuplot will plot the two lowest Bessel functions, J0(x) and J1(x). From these two, the higher order Bessel
functions can be constructed. Bessel functions are used in the solution of certain differential equations, particularly in
cylindrical coordinates, and turn up often in the physics of musical instruments.

Gnuplot also knows about imaginary numbers and certain constants like π.

Try this:

Start gnuplot, then type the following:

gnuplot> print pi
gnuplot> w = 5.8
gnuplot> v = 3.0
gnuplot> print w/v
gnuplot> a = {2.0, 3.0}
gnuplot> b = {1.0, -2.0}

In the first line, you asked gnuplot to print the value of ” pi”.

You can also use pi as a value in a range limit, as in plot [-pi:pi].

In the last two lines you defined two variables, a and b , as complex numbers. The first number in the bracket is the
real part and the second of course, is the imaginary part.

What is the product ab ? You should remember from junior high:

ab = (areal + iaimag)(breal + ibimag)
= arealbreal − aimagbimag + i(arealbimag + aimagbreal)
= 2 ∗ 1− 3 ∗ (−2) + i ∗ (2 ∗ (−2) + 3 ∗ 1)
= 8− i

Now in gnuplot, do:

print a*b

Does gnuplot confirm your complex arithmetic?

Here i =
√
−1.

Note: For some incomprehensible reason, engineers tend to use the letter j for the square root of -1. While this is
completely ridiculous, I point it out so that you will be aware of the pitfall. Physicists tend to use i. If you are a bit
rusty on complex numbers and how to manipulate them, here are a couple links to brush up.

• www.sosmath.com/complex/number/basic

• www.mathcentre.ac.uk/.../all_subjects/complexnumbers/...

5.2. More fun with Gnuplot 169

http://www.sosmath.com/complex/number/basic/soscv.html
http://www.mathcentre.ac.uk/students.php/all_subjects/complexnumbers/complex_arithmetic/resources/

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

5.2.1 A Simple Calculator

Since gnuplot has many builtin math functions, will store things in variables, and will do calculations and print the
result, you can use it as a simple scientific calculator. Often, when I’m working on my computer and don’t want to
grab my calculator (which I actually don’t enjoy using that much), I just fire up gnuplot and do a little calculation
there. Here’s an example: Suppose I want to compute the following quantity

when r = 2.5 and R = 3.9

You could simply start gnuplot and enter the following (Please perform the steps below:

gnuplot> r = 2.5
gnuplot> R = 3.9
gnuplot> result = 4*pi**2 * r**2/sqrt(R**2 - r**2)
gnuplot> print result
82.4300852943585
gnuplot>

Much easier! . Really.

Try it–have your mom type in the above while you compute the same thing on your caculator.

I bet your mom wins.

5.2.2 Solving Equations Graphically

If it’s not already running, start gnuplot.

Plot the two equations you used on the previous webpage, [Step One: Build in Math Functions]

y(x) = x

y(x) = 2x2 − 3x+ 1

Set the x range to [-0.5:2] [Step Two: Plot Range.]

Turn on the zeroaxis [also in section: Step Two: Plot Range].

Notice that 2x2 − 3x+ 1 factors into 2(x− 0.5)(x− 1).

Note: Verify this if you don’t see it immediately (i.e. write out the second expression and show that it’s equal to the
first).

Thus the exression 2x2 − 3x + 1 has roots at x = 0.5 and x = 1. Remember, a root is the x value, xroot, where the
y(xroot) = 0

Is this corroborated by your plot? In other words, you can see on your plot the places where the equation 2x2−3x+1 =
0 is satisfied, and do you get the values: 0.5 and 1.0.

170 Chapter 5. Scientific Visualization

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch5/ch5sec1.html#step-one-builtin-math-functions
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch5/ch5sec1.html#step-2-plot-range
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch5/ch5sec1.html#step-2-plot-range

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Now let’s do something a little more interesting.

The x values where the line intersects the parabola are given by the solutions to the equation:

y(x)parabola = y(x)line

2x2 − 3x+ 1 = x

This equation is slightly more non-trivial to solve; you have to use (OMG!) The Quadratic Formula, and the solutions
are

x = ±
√

2
2

Note: Verify this.

Numerically , these solutions are at x = 0.29289 and x = 1.70711,

Does this look correct from your graph?

You can get a rough anwser by using the mouse. As you move the mouse cursor around in the plot area, notice that
the x, y values of where the mouse cursor is, are printed in the bottom left corner of the gnuplot window.

5.2. More fun with Gnuplot 171

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

This can give you a pretty good idea of the value of something in your graph.

Here’s another method to solve the equation above, instead of the quadratic formula.

We can zoom in and find where exactly the intersection lies. If you successively narrow the plot range, you can “zero
in” in the intersection point. Do the following (use the UP arrow to recall each previous line):

gnuplot> plot [1.5:2] x, 2*x**2 - 3*x + 1
gnuplot> plot [1.7:1.71] x, 2*x**2 - 3*x + 1
gnuplot> plot [1.706:1.708] x, 2*x**2 - 3*x + 1
gnuplot> plot [1.707:1.7072] x, 2*x**2 - 3*x + 1
gnuplot> plot [1.7071:1.70712] x, 2*x**2 - 3*x + 1

Notice how the successive narrowing of the x range allows us to find the x value of the intersection of the two equations
(represented with red and green plots) by reading it from the x axis.

Try the same thing by narrowing the x range around the other root near x = 0.293

This probably seems pretty simple, and not very useful since we already know the solution of the above equation from
the quadratic formula.

What about a situation where you don’t know the solution of the equation by analytic (like the quadratic formula)
methods? In this case the only way to get the result is to use numerical methods, whihc means that we use a
computer to find an approximate (and hopefully very accurate) solution.

5.3 3-D Plots with Gnuplot

You can plot many interesting mathematical functions f(x) with gnuplot such as you have been doing in the previous
exercises.

172 Chapter 5. Scientific Visualization

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Another powerful feature of gnuplot is the ability to plot functions of two variables as a surface z = f(x,y). There are
some examples of what gnuplot can do at the top of this page.

To see what I mean, start gnuplot and type the following at the prompt:

gnuplot> splot x**2 + y**2

This will produce a simple rectangular parabolic “bowl” shaped surface (hence the command s plot), which represents
the function z = x2 + y2.

Here we used splot (surface plot) instead of the previous plot command which is reserved for 2-d f(x) plots.

You should be able to “grab” the splot with your mouse , click and hold down the right mouse button, and move the
mouse.

This will rotate the graph so that you can see it from different angles, allowing you to explore the 3-dimensionality of
the surface.

Try another plot:

gnuplot> splot [0:pi][0:pi] sin(x*y)

5.3. 3-D Plots with Gnuplot 173

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

You can see the interesting shape (can you grab it and look at it from different angles?).

Notice the plot ranges [0:pi] for both x and y . (Remember that gnuplot recognizes the word “pi”)

If you wanted to fix the plot ranges, so that you didn’t have to keep typing them, you could type:

gnuplot> set xrange [0:pi]
gnuplot> set yrange [0:pi]
then do:
gnuplot> splot sin(x*y)

This will set the default ranges to [0:pi] (of course you could set any ranges you want. Sometimes this is a time saver.

Let’s try to make the plot better.

First, let’s make the surface non-transparent. Type this:

gnuplot> set hidden
gnuplot> replot

174 Chapter 5. Scientific Visualization

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Now the surface is opaque, and the underside is a different color. Notice too that replot recalls the last plot.

Still the surface is a litle clunky–it’s made of large plane “panels”.

If these were smaller, the surface would be more smooth. Type:

gnuplot> set isosamples 20
gnuplot> replot

5.3. 3-D Plots with Gnuplot 175

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Much better. You could also have done set isosamples 35 or any other number.

The isosamples are the number of “samples” in each direction (x and y).

Note that if you are doing a 2-D plot , you would set samples to increase the sampling resolution, not isosamples–
which are only for 3-D splots.

That is:

• 2-D: plot: set samples n (default is 100)

• 3-D: splot: set isosamples n (default is 10 in each direction)

If you ever want to see what value a variable is currently set to, do

gnuplot> show isosamples
iso sampling rate is 20, 20

(notice that you could set the isosample in x and y separately. If you give only one number, both x and y are set to the
same value.)

It is generally true for any variable, that you can see what it’s value is by typing show var

where var is something with a value like isosamples or xtics, etc..

You can see all the variables (and classes of variables) that you are able to set by typing just show by itself.

gnuplot> show
^

valid set options: [] = choose one, {} means optional

'all', 'angles', 'arrow', 'autoscale', 'bars', 'border', 'boxwidth', 'clip',
'cntrparam', 'colorbox', 'contour', 'datafile', 'decimalsign','dgrid3d',
'dummy', 'encoding', 'fit', 'fontpath', 'format', 'functions', 'grid',
'hidden', 'isosamples', 'key', 'label', 'loadpath', 'locale', 'logscale',
'mapping', 'margin', 'offsets', 'origin', 'output', 'plot',
'palette', 'parametric', 'pm3d', 'pointsize', 'polar', 'print', '[rtuv]range',
'samples', 'size', 'style', 'terminal', 'tics', 'timestamp',

176 Chapter 5. Scientific Visualization

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

'timefmt', 'title', 'variables', 'version', 'view',
'[xyz,cb]{2}label', '[xyz,cb]{2}range', '{m}[xyz,cb]{2}tics',
'[xyz,cb]{2}[md]tics', '{[xyz]{2}}zeroaxis', '[xyz,cb]data', 'zero'

This confuses gnuplot into asking you which variable you want to show, and it shows you all the options.

You can also do: help set, followed by one of the options listed.

If you want, you can type show all which dumps everything.

We won’t be doing anything with splot for a while, but I wanted to introduce you to it since it produces some cool
plots.

For a bit more eye candy, have a look at some of the plots on the Surfaces and 3-D Plots on the Demo page on the
Gunplot site: Gnuplot Demos

You can make any of these plots with Gnuplot on your computer now! (you may need the data file from the Gnuplot
site to reproduce some of them).

A really nice feature of the demo page is that the commands to produce the plots is also listed. Unfortunately, some
of the plots require data files, and those are not so easy to get (I have them though, if you are really interested in
reproducing one of the plots). Some of the plots use advanced features that we won’t cover in this course, however
you can always learn about these from the online documentation.

One more fun thing to do. Start gnuplot, type:

gnuplot> set isosamples 30
gnuplot> set hidden3d
gnuplot> set **contour**
gnuplot> splot exp(-(x**2+y**2)/50)*sin(x/3)*y**2

5.3. 3-D Plots with Gnuplot 177

http://gnuplot.sourceforge.net/demo/

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Do you see what happened? You produced ” contour ” lines on the “floor” of the plot. This can be useful when your
surface is complicated and you want to understand its structure. The contour plot is like a “topo” map that you may
have used when hiking.

If you are alert, you will notice that even though the surface is quite bumpy, there is a particular straight path which
is at constant “height”. This would be very useful to know if you were a Civil Engineer building a road through this
terrain.

If you just want the contour map, you can do this:

gnuplot> set size square
gnuplot> unset surface

Then grab the plot and look at it “from the top” (as if you are looking down the z axis.

You can get your surface back by doing

gnuplot> set surface

Next we must learn to plot our own data from a file , which we might have taken from an experiment for example.

Before moving on to plotting data files however, try experimenting with surface plotting of some functions of your
own.

Make up some functions, f(x,y), and plot them.

5.4 Plotting Data from a File

Now we are getting down to it.

What we have done so is good for learning mathematics, i.e. plotting beautiful functions and seeing what they look
like. We even learned to solve an equation “Graphically”.

But as scientists we are often trying to learn something about physics from an experiment that we have done. In other
words, we have some data and we what to understand what theoretical model or mathematical relationship is indicated

178 Chapter 5. Scientific Visualization

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

by this data. We can often tell that by just looking at a plot of the data, or in fancier language: visualizing the data.
That’s what we’ll do now.

First, we need some data.

Open Emacs and enter the following data. You should be able to cut and paste it from your browser window) using
the Edit->Copy/Paste tab in the window frame.

It is important that you have columns of ASCII (or text) numbers with “white space” in between them.

“White space” means either a single or more SPACEs (as when you hit the space bar), or a TAB.

0.0 0.24
0.5 0.66
1.0 1.56
1.5 2.05
2.0 2.80
2.5 1.74
3.0 2.54
3.5 3.36
4.0 4.61
4.5 4.44
5.0 5.61
5.5 4.68
6.0 6.72
6.5 5.97
7.0 7.07
7.5 8.38
8.0 7.44
8.5 9.34
9.0 8.12
9.5 9.97
10.0 10.54

Cd to your gp/ dir and save this file as data1.dat.

5.4.1 Plotting your first data file

Now that you have some data (and have ” **cd**ed” to the place where gnuplot can find it)

start gnuplot.

Type:

gnuplot> plot "data1.dat"

Be sure to include the ” ” s.

You need to do this anytime you refer to a “file” or “folder” on your disk, such as a data file, as I have shown in this
sentence.

Your plot should look like this:

5.4. Plotting Data from a File 179

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

5.4.2 Plotting Data, Step 2

By this point you show have a plot of some little red +’s representing the data shown above and saved in data1.dat.
Let’s play around with this plot a bit.

One of the first things I notice is that the + in the uppermost right corner is not one of the data point in the file! That’s
because it is the plot symbol in the key, which in this case, is confusing since it is near other data points.

There are several ways to change this. The simplest is to just move the key:

gnuplot> set key left
gnuplot> plot "data1.dat"

Ah. Much better. You could also out a box around the key; remember how? (see Step Three: Label the Graph:).

Those points are a little small. Let’s change them. This time do the plot with the “with” option:

gnuplot> plot "data1.dat" with points pointtype 6 pointsize 2 linecolor 3

180 Chapter 5. Scientific Visualization

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch5/ch5sec1.html#step-3-label-the-graph

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Now we have larger blue circles for data points! Nice. Also, you can abreviate that long line, as you can with most
gnuplot command options and variables, by typing:

gnuplot> plot "data1.dat" w p pt 6 ps 2 lc 3

Isn’t that a whole lot easier? Try changing the ” pointtype (pt), the ” pointsize” (ps), and ” linecolor” (lc), and see
how your plot changes. You can see the various line/point types and colors by typing test. This will send a test pattern
to the screen and show the things available to your screen.

gnuplot> test

To see the options available to the with command, type help plot with at the gnuplot> prompt. You’ll have to hit
[SPACEBAR] to page through the help pages and get back your gnuplot> prompt.

Summary

So far we have learned the following:

• What is Scientific Visualization.

• How to plot a few mathematical functions (or two, or three, of them...)

• How to customize the plot with **labels, a title, x and y plot ranges, xtics*, etc.

• How to solve an equation graphically

• How to surface plot functions f(x,y) of x and y in 3-dimensions, using splot.

• How to customize plots (move/modify the Key , set isosamples and set hidden3d)

• How to turn on contour plotting.

• How to Plot data from a file.

• How to customize the point size, shape, and color

5.4. Plotting Data from a File 181

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

You’ve learned a fair amount already!

5.5 Homework

Homework 5 is here

182 Chapter 5. Scientific Visualization

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/hw5.html

CHAPTER

SIX

DATA ANALYSIS

6.1 User Defined Functions

Let’s learn how to define our own functions in gnuplot.

As you know, we can plot all kinds of mathematical functions (see Builtin Functions) with gnuplot. However, an
important class of functions are ones that we can make up ourselves out of other functions. If it’s not already running,
start gnuplot.

We already learned how to use gnuplot as a calculator to define our own variables, as you did in Homework 5, where
you calculated the power output of the sun. There, you defined constants made of numbers and builtin constants, such
as

gnuplot> T = 5.5e3 # set temp. of sun's surface
gnuplot> r = 7e8 # solar radius
gnuplot> A = 4 * pi * r**2 # surface area
gnuplot> print A
6.15752160103599e+018 # in m**2
gnuplot> P = flux * T**4 * A # solar power output
gnuplot> print P
3.27/19391028086952e+026 # in watts

You can also define functions.

Try this:

gnuplot> f(x) = 3*x**2 - 2*x + 4
gnuplot> plot f(x)

You should have gotten a parabola. You can also define a function of several variables:

gnuplot> f(x,a,b) = a*x - b
gnuplot> plot f(x,1,2), f(x,3,-2)

You can use functions in other functions

gnuplot> set hidden
gnuplot> set isosamples 30
gnuplot> r(x,y) = sqrt(x*x + y*y)
gnuplot> splot [-2:2][-2:2] exp(-r(x,y))*cos(pi*r(x,y))

183

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/mathfuncs.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

You can build quite complicated functions with gnuplot. Remember however, that the variable that is used for plotting
in a 2-D plot is always x.

Note: Actually what I said above about x is not 100% true; you can do:

set polar

which will make the default plot variable t (for “theta ”).

This makes gnuplot plot functions as distance from the origin (radius) vs. angle t . The default range is 2*pi radians).

6.1.1 The Conditional Function

One very useful construct that I sometimes use is the C programming if/then shorthand notation which gnuplot
recognizes:

‘(conditional phrase) ? (if TRUE value) : (if FALSE value)’

The conditional phrase is a question such as

x == 0 # is x equal to zero?
x != 0 # is x NOT equal to zero?
X > 4 || x < 3 # is x greater than 4 OR less than 3?
x >= 0 && x <= y # is x greater to or equal to zero AND less than or equal to y?

where we have used the programming logical conditions:

• ==

184 Chapter 6. Data Analysis

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

• !=

• >

• <

• >=

• <=

• &&

• ||

The last two, ‘&&’ and ‘||’, if you haven’t figured them out already, are &&–meaning logical AND (both things must
be true, for the whole phrase to be true), and ||–meaning logical OR (only one part needs to be true for the phrase to
evaluate as true).

If the question part is TRUE, the result is the thing between the ? and : If the question is FALSE, the result is the thing
after the :

Here’s an example. Plot a function whose value is f(x) = 5 if x is between 0 and 1, but f(x) = 0 otherwise.

gnuplot> f(x) = (x>0 && x<1) ? 5 : 0
gnuplot> set xzeroaxis
gnuplot> plot [-1:2][-1:6] f(x)

Try it! Such constructs could be handy in Digital Signal Processing classes.

You can even define functions recursively , such as the factorial function, n! = n*(n-1)*(n-2)...3*2*1.

gnuplot> fac(n) = (n != 0) ? n*fac(n-1) : 1
gnuplot> print fac(3)
6
gnuplot> print fac(5)
120
gnuplot> print fac(8)
40320
gnuplot> print fac(10)
3628800

6.1.2 Functions with Constants

One last thing. Notice that I can define a function with a variable, c, in it:

gnuplot> f(x) = c/sqrt(1 + x)

However when I try to plot the function, gnuplot complains that the variable c is not defined, hence it, rightly, doesn’t
know how to plot the function.

gnuplot> plot f(x)
undefined variable: c

If I go ahead and define c

gnuplot> c = 5
gnuplot> plot f(x)

6.1. User Defined Functions 185

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

gnuplot can now plot the function, since it knows how to evaluate it.

I can update the value of c by typing

‘c = 10’ , and ‘replot’,

and I’ll get a new function ‘f(x) = 10/sqrt(1 + x)’.

Notice too that gnuplot stopped plotting for x <= 1 , since the function becomes complex for x < 1. In fact it’s singular
at x = -1. It will however, still tell you the complex value if you ask:

gnuplot> print f(-2)
{0.0, -5.0}

Next, we’ll use the ability to define functions with constants to let gnuplot find the “Best” constants for the function to
“fit” our data.

6.2 Fitting Functions to Data

So, now we can do science, i.e. discover something about the world.

We’ll start with a trivial example.

Suppose you and a friend are confronted with the following circuit in lab (likely you did this in the 5rd grade, or later
in PHYS 55).

You have a variable (i.e. at your control) current source, I, in a simple circuit with a resistor, R, whose value you do
not know.

As your friend varies the current, you are able to measure the voltage, V, across the resistor. As you know from your
studies of circuits, the voltage should be related to the current by Ohm’s Law:

V = IR

Thus, if you plot your measurements of V versus I, you could find the resistance, R, from the slope of the line that
goes through your data.

Here’s the data. You can also download the file iv.dat to save you typing it in by hand (right-click, Save Link).

I V_R
#amps volts

0.00 0.00
0.10 6.77
0.20 33.84
0.30 42.38
0.40 53.07
0.50 69.87
0.60 81.45
0.70 96.91
0.80 103.90

186 Chapter 6. Data Analysis

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/iv.dat

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

0.90 111.99
1.00 125.11

Before we begin, notice that the data file has comments at the top, lines which begin with a ‘#’ . You can put comments
anywhere in your data file; everything on the line after a ‘#’ will be ignored by gnuplot.

Start gnuplot and plot this data.

You can see that the voltage rises sort of linearly with increasing current.

Estimate the slope by eye.

What is your estimate? (write it down or remember it for later)

Let’s try to fit a line to the data “by hand”.

Define a linear function: B

f(x) = a*x + b

(that’s a line, right?)

Since the first data point is (0,0), and since Ohm’s law has no constant term, let’s set:

gnuplot> b = 0

(Knowing this, we could just as easily defined f(x) = a*x.

To set a, take your in initial guess from above:

gnuplot> a = your estimate from above

This is a number! You will be typing something like ‘a = 200’.

Now, plot the data and your function together.

gnuplot> plot "iv.dat", f(x)

6.2. Fitting Functions to Data 187

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

How well does your guess match?

You can refine your guess by typing a new value for a, and doing ‘replot’. If the ‘f(x)’ line is too steep, set a lower.

Try it.

Do you see how the line changes as you change the slope, a? Try to zero in on the best line that “fits” your data.

What is your best estimate of a?

6.2.1 Least Squares Fit

Gnuplot has a wonderful builtin command to automate this process, in a very powerful and flexible way.

The command is called, not surprizingly, ‘fit’. You use it like this:

gnuplot> fit f(x) "iv.dat" via a
gnuplot> plot "iv.dat", f(x)

The syntax of the ‘fit’ command is:

‘gnuplot> fit function “datafile” via var1, va2, var3,...’

Here

• fit is the fitting command (this is always the same).

• function is a function which you have defined, including some “variables” within it, such as ‘f(x) = a3*(x**3)
+ a2*(x**2) + a1*x + a0’.

• “datafile” is the file where your data is located. Remember that since this is a file , you must refer to it enclosed
in “”s.

• via var1, var2, var3,... are the parameters (the constants) you want gnuplot to tweak until it gets the best fit.
You must have at least one parameter var1, and the keyword via.

188 Chapter 6. Data Analysis

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

When you run the ‘fit’ command, it will spew a fair amount of information as it changes each of the variables you
specified after ‘via’.

Finally, it will converge on the ” Best ” values, and print a summary of the results, which looks like this:

gnuplot> fit f(x) "iv.dat" via a
...

After 3 iterations the fit converged.
final sum of squares of residuals : 231.793
rel. change during last iteration : -8.79516e-08

degrees of freedom (FIT_NDF) : 10
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 4.81449
variance of residuals (reduced chisquare) = WSSR/ndf : 23.1793

Final set of parameters Asymptotic Standard Error
======================= ==========================

a = 130.403 +/- 2.454 (1.882%)

correlation matrix of the fit parameters:

a
a 1.000

This contains some statistical information about your data and the level of its randomness, most of which is beyond
the scope of this course. However, it’s nice to know that it’s there as you learn more about statistics in subsequent
courses. We’ll look at these things a little bit soon.

The important line is:

Final set of parameters Asymptotic Standard Error
======================= ==========================

a = 130.403 +/- 2.454 (1.882%)

This is your result: you have just analyzed your data and found the resistance, R, to be about 130 Ohms, plus or
minus 2.5 Ohms.

Whoa...

6.3 Fitting Data II

In the previous lecture, we did a very simple fit of a straight line to some data, extracting the value of slope of the data.

But how does gnuplot define the “Best” fit?

This goes under a very old branch of mathematics called “Linear Regression” (when fitting linear functions), or “Least
Squares*” fitting, or sometimes “Data Modelling”.

In it’s simplest form, the procedure works like this. We’ll consider a very simple linear fit to three data points.

Suppose your experiment gives you these three data points:

1.0 0.7 # x1, y1
2.0 0.8 # x2, y2
3.0 1.7 # x3, y3

6.3. Fitting Data II 189

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

You define a function f(x) = a*x + b which has some parameters that you can change, a and b in this case.

Each different value of a and b gives a different line; three different possible line examples are shown below.

But again, how do you know which line is the best fit (i.e. comes closest to the data)?

For each data point (labeled by i = 1,2,3), we compute the difference between our guess function f(xi) = axi + b (at
xi) , and the yi value of the real data.

This difference is called the Residual at xi . The residuals of each data point are shown as the little vertical lines (|)
in the figure above.

Since these can be either positive or negative, we square them to get a positive number irregardless of whether the data
is above or below the line.

Then we sum all the squares of residuals.

R =
∑
i

[yi − f(xi)]
2

=
∑
i

[yi − (axi + b)]2

Then: the fit program changes the parameters (‘a’ and ‘b’ in our case, but there could be more) to get the lowest sum
of the Squares of the Residuals , min{R}, hence the name “Least Squares Fit”.

For those who know calculus, we are really doing is taking the derivative of R with respect to a and b and setting those
expressions to zero; this finds where R has a minimum as we vary a and b.

190 Chapter 6. Data Analysis

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

This gives two equations that we have to solve, sumultaneously.

dR

da
= −2

∑
i

[yi − (axi + b)]xi = 0

dR

db
= −2

∑
i

[yi − (axi + b)] = 0

These equations are actually easy to solve (email me if you need help). They are really just a system of two coupled
linear equations, which you could use Linear Algebra to solve!

aα1 + bβ1 = γ1

aα2 + bβ2 = γ2

where

α1 =
∑
i

x2
i

β1 =
∑
i

xi

γ1 =
∑
i

xiyi

α2 =
∑
i

xi

β2 =
∑
i

= N

γ2 =
∑
i

yi

It’s easy to solve the equations above for a and b:

a =
γ1β2 − γ2β1

α1β2 − α2β1
=

(
∑
i xiyi)(N)− (

∑
i yi)(

∑
i xi)

(
∑
i x

2
i)(N)− (

∑
i xi)(

∑
i xi)

b =
γ2α1 − γ1α2

α1β2 − α2β1
=

(
∑
i yi)(

∑
i x

2
i)− (

∑
i xiyi)(

∑
i xi)

(
∑
i x

2
i)(N)− (

∑
i xi)(

∑
i xi)

However, gnuplot doesn’t actually solve them!

It just varies a and b and sees how much R changes. If increasing a decreases R, then gnuplot increases a a little more.

Once changing the parameters by a little amount always increases R, fit stops and prints out the resulting parameters:

After 4 iterations the fit converged.
final sum of squares of residuals : 0.106667
rel. change during last iteration : -3.71111e-09

degrees of freedom (FIT_NDF) : 1
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.326599
variance of residuals (reduced chisquare) = WSSR/ndf : 0.106667

Final set of parameters Asymptotic Standard Error
======================= ==========================

**
a = 0.5 +/- 0.2309 (46.19%)
b = 0.0666667 +/- 0.4989 (748.3%)

**

6.3. Fitting Data II 191

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

This gives the paramerters of the line that is the “Best” fit to the data, as well as some information about how good the
fit is (how big was the sum of the squares of the residuals).

This Best line looks like this. It’s the one that’s closest to the data.

For more information on the Least Squares method can be found here:

• http://mathworld.wolfram.com/LeastSquaresFitting.html

• http://www.mathwords.com/l/least_squares_regression_line.htm

as well as any good math book on statistics.

As you can see from the figure below, we need not limit ourselves to linear functions–you could do the same with
almost any function and data.

192 Chapter 6. Data Analysis

http://mathworld.wolfram.com/LeastSquaresFitting.html
http://www.mathwords.com/l/least_squares_regression_line.htm

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Your job as a scientist is to have insight (usually from theory) as to which function is correct.

In this case, you want a quadratic function. You would do the following

gnuplot> f(x) = a*x**2 + b*x + c
gnuplot> fit f(x) "data2.dat" via a ,b, c
gnuplot> plot "data2.dat", f(x)

Do you see that we’ve defined a quadratic function: :math”a x^2 + b x + c above? Try this yourself . Here’s the data:
data2.dat

Here’s my fit.

6.3. Fitting Data II 193

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/data2.dat

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Operator Binding or Precedence

Above, when writing about how to enter into gnuplot the fit function for a parabola, I wrote f(x) = a*x**2 + b*x
+ c
without parentheses. This probably bothers several of you, who would rather see the function written as:
f(x) = a*(x**2) + b*x + c
which is “safer” . As with most computer math operators (like * and /), the “exponent” operator ** acts only on
the previous thing.
Clearly
(a*x)**2
is much different than
a*(x**2).
I have been a bit lazy and used the fact that the exponent operator “binds tighter” than the multiplication operator.
When gnuplot reads the line
a*x**2 + b*x + c
it first squares x before anything else, because ** has the highest “operator precedence” or “tightest binding”.
Then it does the multiplications a*(x**2) and b*x
Finally, it does the additions because + has lowest precedence.
But we could also use:
a*(x**2) + b*x + c

6.3.1 Using the “Using” command

A very VERY important feature of gunplot’s plot and fit functions is the using argument. It has MANY uses, some of
which we’ll look at below.

Plotting data from different columns

Suppose your data file has separate columns of data that are all measured at the same time. You have an example of
this in your “YOURNAMEcalpop.dat” file.

Go ahead and find it now.

Before we look at it in gnuplot however, we will have to edit it slightly. It will look something like this (right?):

Year Total US Total California
1900 76212168 1485053
1910 92228496 2377549
...

Start emacs and Open YOURNAMEcalpop.dat.

We have to make the first line (or lines) into a comment, ortherwise gnuplot will bail trying to plot the number “Year”.

Remember how to make a line into a comment? If not see here: Plotting Data from a File. (Simply put a # at the
beginning of the line.)

Now our file looks like this:

#Year Total US Total California
1900 76212168 1485053
1910 92228496 2377549
...

We can do a normal plot:

194 Chapter 6. Data Analysis

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch5/ch5sec4.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

plot "calpop.dat"`

which plots column 1 and 2 on the x and y axes. However look at what this command does

gnuplot> plot "calpop.dat", "calpop.dat" using 1:3

While the first plot is the normal default one–columns 1:2 on x : y , the second part, calpop.dat” using 1:3, plots the
data in calpop.dat again, but this time using columns 1 and 3.

You can simplify this with the abreviated version:

gnuplot> plot "calpop.dat", "" u 1:3

The empty “” means use the same datafile as before (with older versions of gnuplot you will have to supply the datafile
name again), and u is short for using.

Also, since the Key is in the way of the data in the upper right, let’s move it, and give the key items titles other than the
default names for the plot command.

6.3. Fitting Data II 195

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

gnuplot> set key box left
gnuplot> plot "calpop.dat" title "US Population", "" u 1:3 title "CA Population" pointtype 7

This looks very nice. Notice that we:

• moved the Key and put it in a box, with the single line: set key box left

• added titles to the key items with title “string”. The title character string must be enclosed in quotes.

• changed the point type used for displaying the data by specifying pointtype 7

This long command to gnuplot can be considerably simplified by abreviating title and pointtype to

gnuplot> plot "calpop.dat" t "US Population", "" u 1:3 t "CA Population" pt 7

You can see the different ‘pointtype‘s, and some other info, by typing

gnuplot> test

196 Chapter 6. Data Analysis

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

The pointtypes (and linetypes) are shown on the right side).

Of course you could do more if you had more columns, such as

plot “datafile” u 1:4, “” u 1:3, “” u 3:2

etc. Notice that the last instance, u 3:2, plots the 3rd column as the x values and 2nd column as y values of the points.

Very nice, huh? But now–Check this out!

You can modify the data on the fly with using!

Try these examples:

gnuplot> plot "calpop.dat", "" u 1:(10*$3)
gnuplot> plot "calpop.dat" u 1:(1.0/$2)
gnuplot> plot "calpop.dat" u 1:($3/$2)

In the above examples we did

6.3. Fitting Data II 197

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

u 1:(10*$3) -> plots 10 times the -value- in column 3
u 1:(1.0/$2) -> plots 1.0/y for column 2 values
u 1:($2/$3) -> plots the ratio of the values in columns 3 and 2

Here’s the syntax for modifying data with using:

Simple i.e. just plot different columns:

• The using command takes the form u 1:4 to plot columns 1=x and 4=y, for example. No parentheses needed to
just rearrange the columns used for x and y.

If you want to refer to the value in a particular column, so that you can multiply, divide, or act with other math
functions on it, etc.

Manipulating column values in the plot:

• instead of a column number [example u 1:4], you must enclose the column placeholder in ()s.

• inside the ()s, you must refer to value of a datum in column n as $n. Like this: u 1:($4)

• then, you can treat $n as the value of the datum for that point.

Here’s an example. Our Rutherford α -particle scattering experiment produces the following data:

file: ruth.dat:

#theta flux
-30 27.6
-25 65.4
-20 195.2
-15 762.4
-10 4740.8
-5 14392.6
0 9139.8
5 1957.6
10 361.6
15 113.6
20 35.8
25 23.2
30 12.2

and the following gnuplot commands create this plot:

gnuplot> set xlabel "angle theta (degrees)"
gnuplot> set ylabel "Counts per 1000 sec"
gnuplot> plot "ruth.dat" t "Run 1" pt 5

198 Chapter 6. Data Analysis

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

According to theory, these data should follow a curve that looks like this, where A and θo are constants (to be solved
for):

N(θ) =
A

sin4[(θ − θo)/2)

It turns out that the fit procedure has a hard time with this because of the singularity when θ is zero.

This is a common issue for curve fitting algorithms; if the fit function has a singularity, they often fail.

However, if we were to plot the inverse of our data: 1/N(θ), our fit function to those data would be

1
N

(θ) =
1
A
sin4[(θ − θo)]/2)

This function simply goes to zero as θ → 0, instead of blowing up. So the fit command is stable. It’s really simple to
plot the inverse of our data from the same file:

gnuplot> plot "ruth.dat" **u (pi*$1/180):(1.0/$2)** pt 5

Notice that I also converted the angle (in column 1) to radians.

Now it’s easy to fit this data:

gnuplot> fit f(x) "ruth.dat" u (pi*$1/180):(1.0/$2) via a,x0
...
After 12 iterations the fit converged.
final sum of squares of residuals : 5.97834e-05

6.3. Fitting Data II 199

http://hyperphysics.phy-astr.gsu.edu/hbase/rutsca.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

rel. change during last iteration : -4.08902e-07

degrees of freedom (FIT_NDF) : 11
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.00233128
variance of residuals (reduced chisquare) = WSSR/ndf : 5.43486e-06

Final set of parameters Asymptotic Standard Error
======================= ==========================

a = 12.394 +/- 0.3675 (2.965%)
x0 = -0.0577061 +/- 0.003981 (6.899%)

Shazzam!

Mathematical Manipulations of Data with Using

With the using command, you can do simple or complicated mathematical transformations of your data when you plot
it.

A very simple example is this. Suppose you you have these two data sets:

• h1.dat

200 Chapter 6. Data Analysis

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/h1.dat

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

• h2.dat

If you plot them,

gnuplot> plot "h1.dat", "h2.dat"

they look like this:

The h1 data shows some interesting structure: clearly there is something happening at around x = 25, but it’s pretty
hard to see what’s going on with h2. Have a look at the data files by scrolling throuh them with less:

less h1.dat
...
1.130134e+01 70
1.230134e+01 79
1.330134e+01 93
1.430134e+01 104
1.530134e+01 134
1.630134e+01 146
1.730134e+01 139
...

and

less h2.dat
...
1.275000e+01 0.426
1.325000e+01 0.346
1.375000e+01 0.324

6.3. Fitting Data II 201

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/h2.dat

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

1.425000e+01 0.292
1.475000e+01 0.252
1.525000e+01 0.198
...

Ah. Now we see what’s going on. Where h1.dat has values around ~100, h2.dat‘s values are around ~01. Perhaps we
are looking at the energy spectra from two different sources, one much more intense than the other.

Let’s adjust this with the using command and scale the h2 data.

Plot the data this time with:

gnuplot> plot "h1.dat", "h2.dat" u 1:(10*$2)

Notice the syntax to the using (u) command: u 1:(10*$2). This means “use the column 1 values as they are for x, then
take the value of the column 2 entry ($2), multiply it by 10, and use it for the y value (10*$2) of the point to be plotted.

Now we see something emerging–a little bump at ~x = 10.

We can blow this up even more by increasing our “scale factor” in the using command. Try:

gnuplot> plot "h1.dat", "h2.dat" u 1:(100*$2)
gnuplot> plot "h1.dat", "h2.dat" u 1:(400*$2)

202 Chapter 6. Data Analysis

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Now we can see something important. The h1 data has a peak around ~25, whereas the h2 data peaks around ~10.
This is a simple use of the using feature.

While you need to know what you are doing, know that you can use any of the built-in math functions with using. In
fact you can build quite complicated functions of your own and apply them.

Here’s a very simple example:

Suppose your file looked like this:

x y

1 1
2 10
3 100
4 1000

the using command

u 1:(2*log10($2)+1)`

would plot these data as if they were

x new y

1 2*0+1 = 1
2 2*1+1 = 3
3 2*2+1 = 5

6.3. Fitting Data II 203

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/mathfuncs.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Using and If/Then

Here is another of my favorite handy using examples. Make sure you understand what it does.

plot "calpop.dat" u 1:($1>=1950 ? $2 : 1/0) pt 5, "" u 1:($1<1950 ? $2 : 1/0) pt 7

This uses the fact that 1/0, division by zero, evaluates to undefined , so gnuplot ignores that point.

The IF/THEN (actually called the “ternary”) operator works like this:

y = Conditional ? Value if True : Value if False

Ususally, when we write y = x we are set y to the value of x. So if the value of x = 5, then after the statement y = x,
the value of y is now 5.

In the ternary operation, in order to determine the value that y should be set to, the Conditional statement is evaluated.
A Conditional statement is either True or False, like x > 0 or x <= 10. If the Conditional is True then the value used
for y is the first value–the one between the ? and the :. If the Conditional is False, then the second value is used, the
one after the :.

In the example above,

u 1:($1>=1950 ? $2 : 1/0)

the first part of the using operator u 1:, takes the first column of the data file (Year) for the x value of the plotted point,
as per normal. However the second part ($1>=1950 ? $2 : 1/0 runs the Conditional first: $1>=1950, and checks if the

204 Chapter 6. Data Analysis

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

year ($1 is the value in the 1st-column) is less than 1950; if YES it is, the Conditional returns True and the “normal”
value as listed in the file: $2 meaning the value from column 2 is used for the y coordinate of the point.

If the Conditional is NOT satisfied (evaluates as False), then the y coordinate is set to 1/0, which is undefined. So
gnuplot ignores this point and does not plot it. The result of the above using expression is that only points whose year
is greater or equal to 1950 are plotted.

To make the plot shown above, with red squares and green circles, plotted two versions of the data, each with its own
conditional.

For the first data set in the plot, the u command asks if the x value (the year) is greater or equal to 1950. If so, it is
plotted as is, with pointtype (pt) 7.

In the next data set in the plot, if x (the year) is less than 1950, the u command returns that point’s normal y value, and
it is plotted (this time with pt 7). In the second case, points for years > 1950 are not plotted.

This is a handy way to suppress plotting or fitting of some part of your data.

More fun with the Ternary

Finally, one last example. This one goes out to all of you who have to take Digital Signal Processing.

First, let me introduce a couple interesting math functions.

floor(x) returns the largest integer less than x.

Thus: floor(4.73) = 4
floor(9.99999) = 9
floor(pi) = 3
etc.

and the mod operation, for which we use the percent symbol: %

For two integers a and b:

a % b returns the remainder of integer division.

Thus: 7%3 = 1
12%6 = 0
24%5 = 4
etc.

A convenient Conditional to check if an integer a is EVEN, is

a%2 == 0

6.3. Fitting Data II 205

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

If this is True, then a must be even (divisible by 2 with no remainder). If it’s False, then the remainder is 1, and the
number is ODD.

The mod operation only works for integers however, but you can combine the floor operation to extract the integer part
of a number, then use that in a mod expression.

Now consider this graph. I have set samples 1000 to get a finer plot with 1000 sample points, rather than the default
100 points. That way, my “edges” are more vertical. If you set samples 100 back to the default, you’ll see what I
mean.

gnuplot> f(x) = floor(x)%2 == 0 ? 0 : 1
gnuplot> g(x) = floor(x/3)%2 == 0 ? 2: 3
gnuplot> set zeroaxis
gnuplot> set samples 1000
gnuplot> plot [0:20][-1:5] f(x), g(x)

6.4 Saving and Printing

Often you need to stop your work where you are (maybe to Sleep!) and save it, so you can come back to the project
later. There are two different aspects to saving.

6.4.1 Saving a Plot to re-Load it later

If you want to save a plot so that you easily reproduce it later, you use the save command. Once you have a plot that
you like, you simply do:

206 Chapter 6. Data Analysis

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

gnuplot> save "myplot.gp"

This will create a new text file named “myplot.gp” in the present working directory (remember pwd).

Since it’s a text file, you can easily look at it, and even edit it if you wanted.

Try it. Make a plot of your favorite function, then save it as shown above .

Have a look at this file with less.

An easy way to do this is to ” CTRL-z ” out of gnuplot. This is another bit of Unix magic.

At the gnuplot prompt, type CTRL-z

This should pop you out of gnuplot (actually it suspends gnuplot and gives you back your Terminal shell prompt). At
the shell prompt, you can do

less myplot.gp

and have a look at your file. Notice in particular the last lines which have the plot command that you used to make
your graph.

When you’re done looking at your file, your can bring gnuplot back by putting it in the foreground. At the shell
prompt, type

fg

then ENTER . You should now have your gnuplot> prompt back. (You may have to hit ENTER again to refresh it).

Now, you can shut down your computer, go to a concert, and come back to your scientific work tomorrow. To see your
plot again, cd to the folder where “myplot.gp” is, start gnuplot , and do:

gnuplot> load "myplot.gp"

This should popup the graph window with your previous plot showing.

Remember that all file or directory names must be enclosed in ‘“”‘s.

This method is used when you wish to save to gnuplot commands which produced an individual plot. If you have done
a fit, the function which you have defined will be in the saved file, along with the “best fit” for the parameters that
were found. Note that when you do a fit, gnuplot saves a complete log in the file “fit.log”. Only the log of the last fit is
saved however.

6.4.2 Saving your entire gnuplot session

As we did in HW 5, if you want to save a complete record of all the commands you have typed during your session,
you can do the following:

gnuplot> history "mysession.gp"

6.4. Saving and Printing 207

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/hw5.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

This will create a (possibly long) file called “mysession.gp” with all the commands you have typed into gnuplot. If
you view this file in less, you can read what you had been doing, and cut/paste commands into gnuplot to redo the
things you want.

6.4.3 Saving a plot as an image file

Another very useful save method is to write the plot in a different format , for example as a JPEG graphics file.

Gnuplot has many different Terminals for which it can produce plots. Since gnuplot has been around for 30 years,
several of these are outdated. However, a few are quite useful; particularly, the PDF “terminal” is one of these, for
example.

To see all the terminal types, do

gnuplot>set term

as if you were going to set the terminal to some type. But just type ENTER instead.

This will list all the possible terminal types. I’ve highlighted common ones below:

Available terminal types:
aed512 AED 512 Terminal
aed767 AED 767 Terminal
aifm Adobe Illustrator 3.0 Format

bitgraph BBN Bitgraph Terminal
cgm Computer Graphics Metafile

corel EPS format for CorelDRAW
dumb ascii art for anything that prints text
dxf dxf-file for AutoCad (default size 120x80)

eepic EEPIC -- extended LaTeX picture environment
emf Enhanced Metafile format

emtex LaTeX picture environment with emTeX specials
epslatex LaTeX picture environment using graphicx package

epson_180dpi Epson LQ-style 180-dot per inch (24 pin) printers
epson_60dpi Epson-style 60-dot per inch printers
epson_lx800 Epson LX-800, Star NL-10, NX-1000, PROPRINTER ...

fig FIG graphics language for XFIG graphics editor

gif GIF images using libgd and TrueType fonts
gpic GPIC -- Produce graphs in groff using the gpic preprocessor

hp2623A HP2623A and maybe others
hp2648 HP2648 and HP2647
hp500c HP DeskJet 500c, [75 100 150 300] [rle tiff]
hpdj HP DeskJet 500, [75 100 150 300]
hpgl HP7475 and relatives [number of pens] [eject]

hpljii HP Laserjet series II, [75 100 150 300]
hppj HP PaintJet and HP3630 [FNT5X9 FNT9X17 FNT13X25]

imagen Imagen laser printer

jpeg JPEG images using libgd and TrueType fonts
kc_tek40xx MS-DOS Kermit Tek4010 terminal emulator - color
km_tek40xx MS-DOS Kermit Tek4010 terminal emulator - monochrome

latex LaTeX picture environment
mf Metafont plotting standard

mif Frame maker MIF 3.00 format
mp MetaPost plotting standard

nec_cp6 NEC printer CP6, Epson LQ-800 [monocrome color draft]
okidata OKIDATA 320/321 Standard

pbm Portable bitmap [small medium large] [monochrome gray color]
pcl5 HP Designjet 750C, HP Laserjet III/IV, etc. (many options)

pdf PDF (Portable Document File) file driver

208 Chapter 6. Data Analysis

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

png PNG images using libgd and TrueType fonts
postscript PostScript graphics, including EPSF embedded files (*.eps)

pslatex LaTeX picture environment with PostScript \specials
pstex plain TeX with PostScript \specials

pstricks LaTeX picture environment with PSTricks macros
qms QMS/QUIC Laser printer (also Talaris 1200 and others)

regis REGIS graphics language
rgip RGIP metafile (Uniplex). Option: fontsize (1-8)

selanar Selanar
starc Star Color Printer
svg W3C Scalable Vector Graphics driver

tandy_60dpi Tandy DMP-130 series 60-dot per inch graphics
tek40xx Tektronix 4010 and others; most TEK emulators
tek410x Tektronix 4106, 4107, 4109 and 420X terminals
texdraw LaTeX texdraw environment

tgif TGIF X11 [mode] [x,y] [dashed] ["font" [fontsize]]
tkcanvas Tk/Tcl canvas widget [perltk] [interactive]

tpic TPIC -- LaTeX picture environment with tpic \specials
uniplex RGIP metafile (Uniplex). Option: fontsize (1-8) (Same as rgip)
unknown Unknown terminal type - not a plotting device
vttek VT-like tek40xx terminal emulator

x11 X11 Window System
xlib X11 Window System (gnulib_x11 dump)

This is what you get by typing the set term command. To use one of these terminal types, you start gnuplot and get
plot what you want.

After you have the plot looing the way you want it to, you can produce a JPEGF image* of your plot by doing the
following:

gnuplot> set term jpeg # sets the terminal to JPEG
gnuplot> set output "myplot.jpg" # sets the output to a file called "myplot.jpg"
gnuplot> replot # plots the JPG file to "myplot.jpg"
gnuplot> unset output # unset file output
gnuplot> set term pop # return terminal type to default

(of course you don’t need to type the #comments shown above)

The last line above, set term pop, returns the terminal type to the “standard” one that was set when gnuplot stated.

Do this for a plot of your choice (say, sin(x) if you can’t think of a more interesting one).

Use the CTRL-z trick to suspend gnuplot, and get your shell prompt back. Then use the Fedora Linux (KDE Desktop)
Image Viewer, gwenview, to look at the image you made. At the shell prompt, type:

sci[gp]> gwenview myplot.jpg

You can now include this image in a document or webpage, or send it to a collaborator via email.

PNG and JPEG files are useful for including other documents such as HTML web pages or MS Word documents.

Another very popular file format at the moment is PDF.

You can make a PDF file of your plot by following the steps above, but using pdf instead of jpeg.

6.4. Saving and Printing 209

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

gnuplot> set term pdf
gnuplot> set output "myplot.pdf"
gnuplot> replot
gnuplot> unset output
gnuplot> set term pop

Be sure you can make a plot in PDF format. Then find it an view it with your PDF viewer.

You’ll need to send me a PDF plot later, and we’ll use JPEG plots in LaTeX.

6.4.4 Printing your Plots

The methods above are almost enough to do everything, but there are times when you just need to send your Mom
a copy of some really interesting work that you’ve recently done, so she can put it on the ‘fridge to display for her
friends.

There simplest method to Print a Plot is to just produce a PDF file as described above, find the file with a PDF Reader,
and print the file from the Reader.

The PDF Viewer that is built into Fedora Scientific is okular. At the prompt, you can type:

sci[gp]> okular myplot.pdf

to view the PDF file.

Alternatively, you can copy the file to one of your Shared Folders:

sci[gp]> cp myplopt.pdf ~/winDesktop

for example, to copy the file to your computer’s Desktop. Then you can open the PDF file with, say Adobe Reader as
you do with other PDF files. From there it is easy to print them.

Since Adobe Reader is most likely already set up to print to your default printer, this is the easiest way to get a hardcopy
plot to put on your ‘fridge.

6.5 Homework

Homework 6 is here

6.6 A Worked Example: Theory meets Experiment

In Homework 2 you visited Johnny Utah, a BASE jumping video, photography, and stunt company who have data
collected from a long freefall. You should all have a file with this data.

I decided to check out how good this data is.

Also, the distance data is in feet and speed data in miles/hour . It would be easier to convert this to meters and m/s .
We can do this by taking advantage of the using feature when plotting data.

To find how to convert, I will use the Unix units program, a wonderful little text based program that gives you
conversion factors for one set of units to MANY others.

In an xterm, you should be able to type ” units” at the prompt and get:

210 Chapter 6. Data Analysis

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/hw6.html
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/hw4.html
http://www.johnnyutah.com/freefallchart1.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

sci[~]|>units

2438 units, 71 prefixes, 32 nonlinear units

You have: feet
You want: meters

* 0.3048
/ 3.2808399

You have: mph
You want: m/s

* 0.44704
/ 2.2369363

Now, I can set two conversion factor constants in gnuplot that I will use later.

gnuplot> f2m = 0.3048
gnuplot> mph2mps = 0.44704

6.6.1 Theoretical Expectations from Physics

You probably know that for an object in free fall in the Earth’s atmosphere, it begins to drop as if there is no air
resistance, so the distance from the starting point increases as

y(t) =
1
2
gt2

where g = 9.8 m/s 2 .

At first, before the object is moving very fast, this will be a good approximation. So let’s check it.

Here’s your data from Homework 4.

Ok. Here’s the data file:

1 22 16 16
2 42 46 62
3 61 76 138
4 72 104 242
5 87 124 366
6 96 138 504
7 103 148 652
8 107 156 808
9 111 163 971
10 114 167 1138
11 117 171 1309
12 119 174 1483
13 119 174 1657
14 119 174 1831
15 119 174 2005
16 119 174 2179
17 119 174 2353
18 119 174 2527
19 119 174 2701
20 119 174 2875

Plot it.

gnuplot>plot "MYfreefall.dat" u 1:(f2m*$3), 0.5 * 9.8 * x**2

6.6. A Worked Example: Theory meets Experiment 211

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

At the beginning of the graph (for small t), does the function match the data? Do you understand how I converted it
to meters by simply using the using command and the constant f2m? Make sure you do.

Fairly quickly, the force of air resistance becomes apparent and once the force of gravity and the force of air resistance
are equal, the object will no longer accelerate (right?

Fgravity − Fair = 0

So,

Ftotal = 0

With no net force on the falling object, it will no longer accelerate, since F = ma, for those who haven’t had Physics
in a while).

If the acceleration is zero, it’s speed will be constant. This speed is called terminal velocity. We can see that on our
plot, after about 8 seconds–the position increases linearly (i.e. like a line).

Looking at your data file, the position data in column 3 seems to make sense: quadratic (∼ t2) at the beginnig, and
linear (:math:‘sim t) at the end, as expected. We’ll deal with the velocity data later.

We can estimate the terminal velocity by plotting a line along with the data and varying its slope until we get it to
match the linear part of the data, after 8 sec. It helps to offset the line with a negative b constant (a*x - b).

Try to estimate the terminal velocity by plotting the data, AND a line a*x + b. Vary the constant a and b until the line
goes though (as best you can) the points from t >= 10.

212 Chapter 6. Data Analysis

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Now for the theory.

The governing equation here is Newton’s: F = ma

We all know that one, right? However, What it really means is this.

where F is the total force Fgravity − Fair, m is the mass, and the acceleration, a, is the second derivative of position
x(t) with respect to time.

F = ma = m
d2y

dt2

I am being pedantic here for those who have not had calculus for some time. I will shortly get to differential equations–
if you have not had DiffEQs , don’t worry–this is just an example. Nonetheless, follow as much as you can.

Recall that the force on a falling object due to gravity is constant

Fgravity = mg

Now, it turns out that except for rather slow speeds, the force of air resistance can be approximated by a force which
grows as the square of velocity

Fair = −kv2

The constant k depends on a number of things

k =
1
2
ρCA

where:

ρ = massdensity
C =∼ 1 a constant related to the shape of the object
A = cross sectional area perpendicular to velocity

Let’s simplify the differential equation:

F = ma

or

ma = F

m
d2y

dt2
= mg − kv2

d2y

dt2
= g − k

m

(
dy

dt

)2

d2y

dt2
+
k

m

(
dy

dt

)2

− g = 0

d2y

dt2
+ b

(
dy

dt

)2

− g = 0

In the last differential equation, we have defined b = k/m. This is the one we have to solve for the function y(t) .

I will skip the solution of this equation (it is done in many books on Differential Equations, as well as many jr. level
Physics texts. There is a good review that I found:Auburn Engineering Course).

The function y(t) is

y(t) =
1
b

log
[
cosh(

√
bg t)

]
where g is the acceleration of gravity, and b = k/m is as defined above. cosh() is the hyperbolic cosine.

See if you can check that this equation y(t) satisfies the differential equation in the last line above!

6.6. A Worked Example: Theory meets Experiment 213

http://www.eng.auburn.edu/department/me/courses/nmadsen/egr182a/drag01.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

6.6.2 Theory meets Experiment

If you visit the webpage above to look at the method of solution, or even if you just verify that the solution satisfies
the DiffEQ, you can see that this was a non-trivial result. How well does it match the experimental data?

All we have to do to check is to fit the solution to the data. Remember that gnuplot (almost) always uses x for the
horizontal axis even though we are calling it t in our theoretical discussion. Similarly, we have called the position x(t)
even though it’s been plotted on the y axis. ...Just wanted to be clear.

gnuplot>f(x) = 1/b*log(cosh(sqrt(b*g)*x))
gnuplot> fit f(x) "MYfreefall.dat" u 1:(f2m*$3) via g, b
...
Final set of parameters Asymptotic Standard Error
======================= ==========================

g = 10.0539 +/- 0.0284 (0.2824%)
b = 0.00338874 +/- 2.414e-05 (0.7123%)
...

gnuplot>plot "MYfreefall.dat" u 1:(f2m*$3), f(x)

214 Chapter 6. Data Analysis

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

BANG!

The theoretical function is really good fit to the data. Also the fitted value for g is rather close to the known value
(9.8):

gnuplot> print (g-9.8)/9.8 * 100
2.59118938657317

within about 2.6%. Notice that in the fit report above, the error on the value for g is 0.284 = 2.8%. Thus the data is
consistent with the known value of g=9.8 m/s.

That’s not too bad for pulling some data from an extreme sports webpage and applying the laws of physics!

6.6.3 Velocity

Next lets look at the velocity. Given the position, y(t), the velocity is just the time derivative:

v(t) =
dy

dt

=
√
g

b
tanh

(√
bg t
)

Check this. You may have to consult your math book to recall the derivative of cosh(x) .

Now we can check the velocity data against the data. Recall that the velocity data is in the stupid units: mph = miles
per hour . However, our constant mph2mps takes care of that. So, define the function v(x) , and plot the data and
theory.

gnuplot>v(x) = sqrt(g/b)*sinh(sqrt(b*g)*x)/cosh(sqrt(b*g)*x)
gnuplot>plot "MYfreefall.dat" u 1:(mph2mps*$2), v(x)

6.6. A Worked Example: Theory meets Experiment 215

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

The match between theory and experiment is not good.

The key thing to realize here is that velocities are usually measured by taking the initial and final positions over some
time interval ∆t, then dividing the change in position ∆y by ∆t to get the average speed over that interval. Thus the
velocity really represents the speed closer to the middle of the time interval. The velocity recorded at, say, 3 seconds,
really should be reported as the speed at 2.5 seconds , since the last measurement of position was made at 2 seconds.
Does this make sense to you? In other words, the velocity data should really be shifted back (left) by 0.5 second in
time. That’s easy to do with using!

gnuplot>plot [0:20] "MYfreefall.dat" u ($1-0.5):(mph2mps*$2), v(x)

216 Chapter 6. Data Analysis

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Much better.

I also added an extended plot range to the graph so we could see the approach to terminal velocity, and how long it
takes to get to a constant speed.

We also see that the ” Terminal Speed” reported in the original data is not quite correct.

The falling object has not yet obtained constant speed. You might want to plot thus using a ” using ” trick like:

gnuplot> u 1:($1>7 ? $2 : 1.0/0)

which will block plotting any points after 7 seconds. Do you see how it works?

6.6.4 Forensic Data Analysis

When you think of forensics, you probably think of CSI of a crime show. Forensic data analysis, is about reconstructing
what you can about something from the data you have.

Let’s see if we can figure out the mass of the jumper!

From our fit, we know that b, the coefficient of air resistance, is

b = 0.0033

Hence, we can estimate the parameters in this equation. The density of air, ρ, is about 1 kg/m 3. The “Shape Coeffi-
cient”, C , for a prone falling human is around 1 (it’s probably slightly higher but to our level of accuracy, 1 will do;
see the article on Drag Coefficients at Wikipedia).

6.6. A Worked Example: Theory meets Experiment 217

http://en.wikipedia.org/wiki/Drag_coefficient#Cd_in_other_shapes

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

The surface of a falling person is also hard to estimate, but let’s say a 6 foot person (~1.8 m) times a width of half a
meter. That’s 0.9m2.

That means that the mass of our falling person is about

b = k/m = 0.0033
k

0.0033
= m

m =
1

0.0033
1
2
ρCA

m = 136 kg = 300 lbs

That seems a bit high, but it could easily be

• a 220 lb man*, with a 50 lb parachute + reserve chute + 30 lbs of

camera and position/speed measuring gear. or + a 180 lb instructor + 100 lb student + 20 lb of gear

3: :///home/jhetrick/www/phys27/pages/gnuplot/solnHW3.html .. _Auburn Engineering Course:
http://www.eng.auburn.edu/department/me/courses/nmadsen/egr182a/drag01.html .. _Wikipedia:
http://en.wikipedia.org/wiki/Drag_coefficient#Cd_in_other_shapes .. _Vertical Visions: http://www.vertical-
visions.com/ .. _Homework 2: :///home/jhetrick/www/phys27/pages/gnuplot/../editor/hw2.html

218 Chapter 6. Data Analysis

http://www.eng.auburn.edu/department/me/courses/nmadsen/egr182a/drag01.html
http://en.wikipedia.org/wiki/Drag_coefficient#Cd_in_other_shapes
http://www.vertical-visions.com/
http://www.vertical-visions.com/

CHAPTER

SEVEN

SCIENTIFIC PUBLICATION

7.1 Scientific Publications

While you have probably learned how to use Microsoft’s Office Suite, including MS Word and Powerpoint, these tools
are not very well suited to presentations which involve a significant mathematical exposition. Not only is it difficult to
create equations, they look lame in MS Word.

That’s why professional mathemeticians, physicists, chemists, computer scientists, economists, engineers, and others
use Latex (pronounced ” LAY’ tek , not ” Laytecs ” like the gloves).

An example of this powerful desktop publishing software is shown here:

This is an equation from a paper of mine.

Have a look at this paper by clicking on the preceeding link. Once on the abstract page, click on the PDF link which
is in the upper right corner of that page. Scroll through the paper. This paper was produced with Latex and Gnuplot
and sent to the publisher in this form, ready for publication. Imagine how impressive your lab report would be if it
looked like this!

You can have a look at some other examples of Latex in action by visiting the ” Preprint Archive ” at Cornell University.
Started by particle physicists in the late 1980s, this repository is where we send copies of our papers at the same time
we send them off to the publisher. That way the paper, and more importantly its results, are available to everyone with
internet access.

The archive is here: http://www.arxiv.org/

219

http://arxiv.org/abs/hep-th/9510090
http://www.arxiv.org/

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

For some examples of Latex output, scroll down to my field: High Energy Physics - Lattice which is where papers on
large scale simulations of particle theory go. (the name ” Lattice ” comes from the fact that we represent spacetime as
a 4-dimenional “lattice” of points instead of the usual “spacetime continuum”. That way we can simulate the quantum
behavior of fields). Have a look at the New listings to see the latest papers posted. This is where almost all new results
in physics appear first. Click on any abstract that interests you, then on the PDF link. That should pop the paper up on
your screen. Look at the gorgeous typesetting of the document.

As long as you are still visiting the archive, have a look around. The new papers in ” String Theory ” usually appear
on High Energy: Theory while new experimental results show up in High Energy: Phenomenology. There’s an
Astrophysics branch that includes both new theoy and experimental results, as well as a whole separate branch for
Mathematics. Or, check out Artificial Intelligence in the Computer Science branch. If you are a scientist, start
getting used to reading!

Won’t it be cool to hand in your next lab report looking polished and professional like one of these research papers?

7.1.1 LaTeX

Again, latex is pronounced: LAY’ tek , (not lay . tecs like the material). You can read why by googling latex. It was
invented by Donald Knuth in the 1980s.

One of the reasons that I have decided to switch to using Fedora Scientific is that latex comes completely installed if
you choose it as a package. That saves a lot of hassle installing it as a standalone package. You can verify that latex
was correctly installed by openning a Terminal window and typing

sci[~]> latex -v

(-v stands for “show version”).

This should display something like this:

sci[~]>latex -v
TeX (Web2C 7.4.5) 3.14159
kpathsea version 3.4.5
Copyright (C) 1997-2003 D.E. Knuth.
Kpathsea is copyright (C) 1997-2003 Free Software Foundation, Inc.
There is NO warranty. Redistribution of this software is
covered by the terms of both the TeX copyright and
the GNU General Public License.
For more information about these matters, see the files
named COPYING and the TeX source.
Primary author of TeX: D.E. Knuth.
Kpathsea written by Karl Berry and others.

If you see an error message, email me and we’ll sort it out.

7.1.2 Getting Started

Latex is a kind of programming language. What you actually do is write a little program (using your text editor)
which gets compiled into a graphical format–we’ll use PDF, but another format that was common is DVI, DeVice
Independent format.

The program that you write is mostly composed of the text of your document, but in addition contains key words
which tell latex to make certain symbols, and take certain lexigraphical actions (superscripting, or bolding, or creating
a new section in your paper).

So, you first need a basic latex document.

Open an Terminal Shell window .

220 Chapter 7. Scientific Publication

http://en.wikipedia.org/wiki/LaTeX

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Make a new subdirectory (below your home/) called latex/ .

Now cd to this directory .

I want to show you a unix “trick” (it’s actually just a standard unix command).

In the terminal window type emacs. This should open an emacs editor on your desktop. Now try to type something in
the xterm window . It doesn’t respond, right?

That’s because when the emacs application starts, it takes control of the xterm’s prompt–the xterm will wait until the
emacs application exits before responding to input.

Exit emacs

Now, start emacs this way:

emacs &

by adding an ampersand “&” after the command. This tells the xterm to ” start emacs in the background ”, detaching
it from the current xterm operation. Notice that emacs starts, but you now have your xterm prompt back and can issue
commands. Make sure that you can now type commands (like ls) at the xterm prompt .

In the open emacs editor, copy the text below and save this file as tiny.tex .

\documentclass{article}
\begin{document}
This is my first latex document.

Oh yeah,
\em{Physics is the Mother of all Sciences}

\end{document}

At your terminal shell prompt (the one that is now active because we detached emacs with the ” &” above), type:

pdflatex tiny.tex

This will create a file called ** tiny.pdf ** in your latex folder. Do an ls to see if it’s there.

The built-in PDF Document in the Fedora Scientific environment is called: okular

While still in your latex directory, do an listing, and see if tiny.tex and tiny.pdf files are there.

Now type

okular tiny.pdf

The viewer should open it up so that you can see your new document.

It’s tiny, but it’s latex document.

7.1.3 Basic Latex Document Structure

Notice what you did above.

• You wrote tiny.tex in plain text using emacs (or any text editor) which is something like a program containing
your text, plus special commands for formating (the words enclosed in em{ ...} are em phasized, for example).
You can also use the form: {em ...}. Later we’ll use special commands for math symbols and more impressive
formatting.

7.1. Scientific Publications 221

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

• Then you compiled the document into a particular output format: PDF in this case, by running pdflatex tiny.tex.

• Finally, you used the PDF viewer, okular, to review your work. At this point you have a document that you
could transmit to anyone with a PDF viewer

Let’s look at the program part:

The Latex Document

Latex commands begin with a backslash: \, followed by a keyword.

Any other word in a latex document is considered text to be typeset.

\documentclass{article}
\begin{document}
This is my first latex document.

Oh yeah,
\em{Physics is the Mother of all Sciences}

\end{document}

7.1.4 The (Minimal) Structure of a LateX Document

At the very least, a latex document must have the following features. It must start with the keyword

\documentclass

followed by arguments. We will usually use the article class, the document begins

\documentclass{article}

\documentclass{article}
\begin{document}
This is my first latex document.

Oh yeah,
\em{Physics is the Mother of all Sciences}

\end{document}

but there are book and other classes that we could have used instead of article.

Following this, we might add some further things to set up the document (including packages, making definitions, for
instance). These are “setup” things, not part of the document text itself.

222 Chapter 7. Scientific Publication

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

\begin{document}

\documentclass{article}
\begin{document}
This is my first latex document.

Oh yeah,
\em{Physics is the Mother of all Sciences}

\end{document}

Simple enough, right? From here, everything either gets printed or actions are taken on latex keywords (like \em{}
below).

\documentclass{article}
\begin{document}

This is my first latex document.

Oh yeah,
\em{Physics is the Mother of all Sciences}

\end{document}

Finally, at the end we put

\end{document}

\documentclass{article}
\begin{document}
This is my first latex document.

Oh yeah,
\em{Physics is the Mother of all Sciences}

\end{document}

A bit more interesting document

If all went well above, try the file below. If things DIDN’T go well, email your file to me and tell me what happened.

Let’s make a file that is a bit more interesting. First, a useful thing to remember is that most of us who know latex,
learned it by copying things out of other files we were shown (or found).

So, you can do the same with these examples I’m giving you. You’ll need the text below.

You can also just download this file first.tex and save it in your latex/ directory, or copy and paste it into a file (called
first.tex) using emacs.

% first.tex
% My first real Latex document

\documentclass[12pt]{article}

\begin{document}

7.1. Scientific Publications 223

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/first.tex

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

\title{My First LaTeX Document}

\author{
Jane R. Feynman \\
Department of Physics\\
University of the Pacific \\
3601 Pacific Ave., Stockton, CA 95211
}
\maketitle

\begin{abstract}
In the abstract section you would put a brief (one paragraph)
description of your project or experiment, and the main results.
\end{abstract}

\section{Introduction}
% LaTeX comments begin with a percent sign, and are not printed.

In the Introduction you would put your introductory remarks. You will
introduce the project and give the reader some context for your study.

\subsection{Subsection: Math}

Including mathematics is easy.
$$
\int_{-a}^{\infty} f(x) dx= F(a)
$$
or you can do it like this for a numbered equation:

\begin{equation}
\oint_C \frac{dz}{z-z_0}=2\pi i
\end{equation}

\begin{equation}
\sum_{i=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}
\end{equation}

A numbered equation can be referred to or cited by giving it a label.
\begin{equation}\label{eq:pot}
V(r)={\hbar^2 \ell(\ell+1)\over 2mr^2}-{\hbar c \alpha\over r}
\end{equation}

Somewhere in your text you may wish to refer to this equation. You don't
need to know what Eq. number it is, just its label. Refer to it with
the command Eq.~(\ref{eq:pot}) and LaTeX automatically uses the correct
equation number, even if you go back and add more equations later. You
will need to run latex twice, once to compute the equation numbers.

\section{Tables}

Suppose that you want to create a table showing your data. The syntax
for a multicolumn table is found below.
\vspace{1cm}

\begin{tabular}{|c|c|c|c|}

224 Chapter 7. Scientific Publication

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

\hline
Run 1 & Output & Run 2 & Output \\
\hline
1 & 37 & 1 & 28 \\
\hline
2 & 42 & 2 & 35 \\
\hline
3 & 73 & 3 & 19 \\
\hline
4 & 15 & 4 & 22 \\
\hline
\end{tabular}

\section{Conclusions}

In this section draw your conclusions and summarize your findings.
Certainly from this short and simple document, we can see that LaTeX
is tremendously powerful, easy, and FUN! There are many online
tutorials and help pages on LaTeX. Simply enter {\tt latex tutorial}
or {\tt introduction to latex} into Google and you will find lots of
help.

\end{document}

Try to compile and view this file in the same way as the one above . You should create the file on your computer, but
if you have problems and want to see the correct version, the PDF output is here.

Have a look at the PDF file. Notice the different types of things contained:

• A title page and abstract

• Sections and subsections

• Mathematical typesetting, including numbered equations

• Tables

• Different fonts and text sizes

Now edit the file.

• Change the author and address your name and address .

• Change the title to My Own Latex Document .

• Change the Abstract to say: In this report, I will prove that Physics is the Mother of all Sciences. .

7.2 Latex Document Environments and Layout

By now you should be able to create PDF files of the sample latex documents shown in the last section. If not, contact
me immediately for help.

Next we need to learn about common structures that you will want to use in your latex documents. There are many of
these, for which there is much freely available literature on the web. However We will focus on the following set since
these are plenty to get you started making really nice reports. The basic structures are:

• Environments or Modes, of which the following are special examples

– Tables

7.2. Latex Document Environments and Layout 225

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/first.pdf

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

– Math modes

– Figures

– Verbatim mode

• Layout

• Bibliography

Finally, we need to learn how to troubleshoot (i.e. Fix our files) from the output of pdflatex. This can be kind of
obscure, but is common to anyone who has done some programming.

Rather than transcribe all of this to HTML for display in your browser, I’ve put the discussion in a Latex file, which
you can read here. You’ll likely want to open the PDF document, second.pdf (“Open Link in New Window”) and
simultaneously follow along looking at the source file, second.tex the text document that made latex turned into
second.pdf.

• second.pdf

• The LateX source code: second.tex).

• s8.png Graphics file needed to compile second.tex

Please read second.pdf and have a look at the Latex source, then do Homework 7

For convenience, second.pdf is reproduced below. However the PDF file is much clearer.

226 Chapter 7. Scientific Publication

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/second.pdf
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/second.tex
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/s8.png
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/hw7.html
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/second.pdf

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

7.2. Latex Document Environments and Layout 227

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

228 Chapter 7. Scientific Publication

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

7.2. Latex Document Environments and Layout 229

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

230 Chapter 7. Scientific Publication

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

7.2. Latex Document Environments and Layout 231

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

232 Chapter 7. Scientific Publication

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

7.2. Latex Document Environments and Layout 233

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

234 Chapter 7. Scientific Publication

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

7.2. Latex Document Environments and Layout 235

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

236 Chapter 7. Scientific Publication

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

7.2. Latex Document Environments and Layout 237

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

238 Chapter 7. Scientific Publication

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

7.2. Latex Document Environments and Layout 239

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

240 Chapter 7. Scientific Publication

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

7.2. Latex Document Environments and Layout 241

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

242 Chapter 7. Scientific Publication

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

7.2. Latex Document Environments and Layout 243

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

244 Chapter 7. Scientific Publication

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

7.3 Error Messages from Latex

Latex is a wonderful typesetting program, however beginners often find it difficult because when something goes
wrong, it takes some practice to learn how to read the error message. Once you get some practice, you’ll quickly learn
that most errors from from misspelling Latex commands or forgetting a $ sign or { somewhere.

You can follow along with the discussion of latex error messages by downloading this file: fixme.tex.

Run

pdflatex fixme.tex

and you will get the errors described here.

7.3.1 An Example of a Latex Error

When you run pdflatex it outputs lots of stuff as it processes your document. Also long as it keeps going, you’re
probably in good shape.

If all goes well, you will get something like the following lines at the end of the processing output, indicating that you
have a readable PDF document. It might still have mistakes, but at least they are not fatal to pdflatex.

Output written on second.pdf (8 pages, 153968 bytes).
Transcript written on second.log.

7.3.2 Errors

When it encounters an error that it can’t understand, it will print out something like this, then stop with a ?, waiting
for input from you as to what to do.

Runaway argument?
{article)
! Paragraph ended before \@fileswith@ptions was complete.
<to be read again>

\par
l.9

?

What has pdflatex told you?

The first line is Latex’s guess at what’s wrong:

Runaway argument?

In this case, it thinks the problem is a “runaway argument”.

This usually means that you forgot the matching brace ”)” or] or } at the end of some option. Arguments are things
that go into functions or commands, as in: “the arguments to the function f(x,y,z) are x, y, and z.

This is followed by the offending line of text or latex code, in this case at line 9: In Emacs, the line number should be
shown in the mode-line, the little info bar at the bottom of your emacs window.

7.3. Error Messages from Latex 245

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/fixme.tex

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Runaway argument?
{article)

Yup. It’s a runaway argument. Do you see it?

The opening { does not have a matching } closing it—it has a) instead.

Next comes some stuff about why it got an error which even I, after many years of using Latex, often don’t really
understand!

Runaway argument?
{article)
! Paragraph ended before \@fileswith@ptions was complete.
<to be read again>

\par

l.9

?

Then the most important part of the error message, the line number of the offense :

Runaway argument?
{article)
! Paragraph ended before \@fileswith@ptions was complete.
<to be read again>

\par
l.9

?

Even if you don’t understand what the problem is, you can begin to look at this line (l.9 or line. 9) in your file.

Finally, at the end of the error message is the lonely ?. This is pdflatex waiting for you to tell it what to do. You can
see what the possible responses are by typing a ? followed by RETURN at the ? prompt:

??
Type <return> to proceed, S to scroll future error messages,
R to run without stopping, Q to run quietly,
I to insert something, E to edit your file,
1 or ... or 9 to ignore the next 1 to 9 tokens of input,
H for help, X to quit.
?

Let’s go through these:

• There’s one command that’s not listed here: hit X then RETURN. This will simply Exit pdflatex and give you
back your prompt.

• If you just hit RETURN without any letter, pdflatex will ignore this error and proceed to the next one. Some-
times this is useful if you have an error that you know you can skip until later. Note however, that sometimes
the current error will cause errors to occur in things that are not wrong. This could happen for example if you
mess up a begin{itemize}. If so, any subsequent item will cause an error.

• Hit S or R (upper or lower case, followed by RETURN). This will be as if you kept hitting RETURN at each
error.

• Hit Q. This will do the same as the above, except it won’t produce any output.

• Type H. This will give you some more information about the error. For example in this case, typing H gives you
the following

246 Chapter 7. Scientific Publication

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

? h
I suspect you've forgotten a `}', causing me to apply this
control sequence to too much text. How can we recover?
My plan is to forget the whole thing and hope for the best.

?

This actually is pretty useful information.

At this point, I usually edit my file and see if I can fix the error. Below, I remind you how to do this

You can edit your latex file in emacs (remember: use the ” emacs &” command to detach emacs. That way you can
run pdflatex at the shell prompt).

To jump to l.9 (line 9), type

M-x goto-line

Remember that in emacs, M-x means ” ESC-x ” followed by typing out the text ” goto-line ” in the minibuffer, the last
line at the bottom of the emacs window.

Emacs will then prompt you for the line number. Type the number 9 and hit enter.

Emacs will jump to line 9.

Emacs Tip

The goto-line command is very useful, but it’s a hassle to have to hit M-x and type “goto-line” each time. What
I do is define a simple key sequence and bind that the goto-line command. You do this by putting the following
line in your .emacs file. Open your .emacs file (in your home directory), and put this at the following text at the
end:
(define-key global-map “C-xC-l” ‘goto-line)
Save your .emacs file. The next time you open a file in emacs you can simply type C-x C-l, CTRL-x CTRL-l
(ell), and emacs will ask you for the line number. Much easier!

Ok, back to your Latex file. Now just fix the problem—in this case, make the braces match.

Often when you are learning, you need to look back at one of your examples, like the source files first.tex or second.tex
to remember the correct syntax. In fact, most of us learned Latex by copying sections of working files.

The issue in this file was a “Runaway Argument”, because there was no matching end }.

So just fix that, save the file, and recompile (run pdflatex on) the file.

\documentclass[12pt]{article } <--------

This will take you to the next error message, or perhaps to the happy result of a readable PDF file.

7.3. Error Messages from Latex 247

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

7.3.3 Other Common Latex Errors

Here are some other common errors that you might encounter.

1. Missing $ inserted This is a very common error once you start to have many equations

or mathematical environments. You left out a $ or [or] somewhere when you were writing text that needs
to be in math mode. It can also occur when you use a math command, such as a sub or superscript: x_i or
y^2 outside of a math environment.

1. Extra alignment tab has been changed to cr. You have too many or not enough &’s in a row of a table or array
or eqnarray.

2. LaTeX Error: begin{ something} on input line line number ended by end{document}. You’ve left out the
end{ whatever}. Perhaps you’re building a table or an eqnarray that has a bunch of lines and you’ve forgotten
the end statement.

3. LaTeX Warning: Reference ... undefined on ...

4. LaTeX Warning: There were undefined references. You have ‘references in your document‘_, and some-
thing is wrong. Usually this happens because you have used to a ref but didn’t define the label that goes with it,
or have a typo in your ref. You need to compile again so LaTeX will be able to get the references right. NOTE:

These errors are not fatal and will not usually stop pdflatex. However, your document will have something like
”...in equation (??) we see...”.

5. Paragraph ended before end was complete. You are probably missing an } at the end of an end{ something}
statement.

6. Undefined control sequence. You’ve tried to use a command that doesn’t exist. Usually this is the result of
a typo. Go to the line number mentioned in the error and look at all your commands. You’ll probably find
something like rfac where you wanted frac.

7. When I try to compile, it starts, but then just hangs. Nothing happens, and I can’t do anything. Then when I
try to save the file, it won’t let me save it with the same name.** You probably have tried to use a package that
you haven’t installed. For example, if you try usepackage{fancyhdr} but haven’t ‘installed the package‘_, then
you’ll hang pdflatex so badly that you should just kill the xterm window (or, if you know how, kill the latex
process you’ve started). **

8. Something like:

! Undefined control sequence.
l.668 \includegraphics

[width=8cm]{s8.png}

Even though you have spelled the latex command \includegraphics
correctly, pdflatex still balks here. That's because you forgot to
tell latex that you want to **\usepackage{graphicx}** Notice too, that
in showing you the undefined control sequence error, pdflatex skips a
line right after the word that it doesn't recognize. In this case
that's **includegraphics**.

1. When referencing figures or equations, the page numbers or equation numbers don’t come out right. Remember
that when using references, you need to run pdflatex twice in order to get the references right.

Now it’s your turn

248 Chapter 7. Scientific Publication

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

7.4 Homework

Download the following file: fixme.tex.

This file has a number of errors, which are shown at the end of this page.

Your job is to correct the errors in this file so that you get a readable PDF document.

This is Homework 8

Note, that there are non-fatal errors, i.e. there are still a couple problems with the document even once pdflatex exits
successfully. Can you spot and fix them?

What I do is iterate the following steps:

Open a terminal and pdflatex the fixme.tex file. If there are errors, open the file in emacs by typing emacs fixme.tex
& so that you have an emacs window and your xterm prompt. Now,

1. In emacs, jump to the line where the error is by with goto-line (did you make the C-x C-l key sequence in your
.emacs file?)

2. Fix the problem.

3. Save the file.

4. Run pdflatex on the file at the terminal prompt

5. If there is a new error, return to step 1.

6. Iterate these steps until pdflatex ends successfully.

The completely fixed fixme file is here: fixed.pdf.

A list of the errors that pdflatex will generate is shown below.

Latex Error Messages from fixme.tex

Runaway argument?
{article)
! Paragraph ended before \@fileswith@ptions was complete.

\par
l.9

..

! LaTeX Error: \begin{abstract} on input line 14 ended by \end{abs}.

7.4. Homework 249

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/fixme.tex
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/download/fixme.pdf

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

See the LaTeX manual or LaTeX Companion for explanation.
Type H for immediate help.
...

l.17 \end{abs}

..

! Undefined control sequence.
l.41 \ssection

{Math Errors}

..

! Missing $ inserted.

$
l.48 ...For example, using a sub or superscript x_

i or y^2 without

..

! Missing $ inserted.

$
l.53

..
! Missing $ inserted.

$
l.56 the $\backslash

$. This makes it an inline math mode switch.

..

! Undefined control sequence.
l.64 \integrate

_{0}^{\infinity} \frac{dx}{1 + x^2} = \rfac{\pi}{2}

..

! Undefined control sequence.
l.64 \int_{0}^{\infinity

} \frac{dx}{1 + x^2} = \rfac{\pi}{2}

..

! Undefined control sequence.
l.64 \int_{0}^{\infty} \frac{dx}{1 + x^2} = \rfac

{\pi}{2}

..

LaTeX Warning: Reference `eq:pot' on page 2 undefined on input line 76.

..

250 Chapter 7. Scientific Publication

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

! Extra alignment tab has been changed to \cr.
\endtemplate

l.118 2 & 42 & 2 & &
35 \\

..

The table doesn't look right.

..

Warning: This chapter is not complete. We will use this week to get caught up, and begin Chapter 9 next week.
Prof. Hetrick (14 March 2015)

7.4. Homework 251

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

252 Chapter 7. Scientific Publication

CHAPTER

EIGHT

INTERMEDIATE LATEX

8.1 LaTeX Error Messages

8.1.1 Dissecting the Error Message

8.1.2 Common Errors

8.2 Physics Department LaTeX Templates

8.2.1 Basic Lab Report (suitable for PHYS 57)

8.2.2 A Professional RevTEX Journal Article (PHYS 151)

8.2.3 The Beamer Class for Presentations

253

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

254 Chapter 8. Intermediate LaTeX

CHAPTER

NINE

SCIENTIFIC DRAWINGS

9.1 Using Xfig for Drawings

Sometimes in scientific work you need to make professional looking drawings. These can be simple block diagrams
like this, in which you display the basic layout of an experiment:

255

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

or a more complex figures and scematics, such as these examples:

256 Chapter 9. Scientific Drawings

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

9.1. Using Xfig for Drawings 257

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Both of these images, and the one at the beginning of this chapter, were made using Xfig.

258 Chapter 9. Scientific Drawings

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

9.2 Starting Xfig

To start the program, open a shell and type: xfig & at the prompt. Do so now, so that you can follow along. This will
open a new window that looks like this.

Shown in the figure are the various areas of the program. The two main tool panels are the

• Drawing Mode Panel This selects the kind of object you wish to draw: Circles, Ellipses, Arcs, Boxes, Lines,
Parallelograms, Text, and Images. We’ll talk about these in more detail below.

• Editting Mode Panel These tools let you manipulate items that you have drawn already. You can Delete, Move,
Align, Scale, Rotate/Flip, and group objects into a single Compound Object .

• Attribute Panel At the bottom of the screen are buttons which determine the attributes of whatever tool has
been chosen. For example, if you are using the Line Drawing Tool, attributes would be line width, line style
(solid, dashed, etc.), arrow heads , etc.

9.2.1 Xfig and the Unix Mouse

Look at the ” Mouse Function Indicator” in the picture above (upper right part of the Xfig window). There are
rectangles which represent the mouse buttons; notice that there are three . This is because the Unix/Xwindows world

9.2. Starting Xfig 259

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

uses 3 button mice.

On a PC

The Center button should be emulated by pressing both mice buttons at once. Thus your mouse buttons are:

• Unix Left = PC Left

• Unix Center = PC Both

• Unix Right = PC Right

On a Mac

Apparently, the recent versions of Fedora Linux/VirtualBox running on Mac OS does not include a way for Mac users
to emulate a 3-button mouse, as described for PC users above. However, if you simply plug in a 3-button (USB)
mouse, or a more commonly found 2-button mouse, with a clickable center scroll-wheel, it will work fine.

Office Depot carries mice like this for about $10. Unfortunately, I don’t know any other way to use Xfig with a Mac.

Note: Copy and Paste in Unix Windows

One of the nice features of Unix/Xwindows is that when you highlight text in an Xwindow, it is automatically copied
to the clipboard .

Compare this to the PC method: first hightlight text, then click the Edit->Copy OR do CTRL-C. In Unix, the copy is
automatic whenever you highlight something.

To Paste text, you simply position the cursor and click with the Middle mouse button. On a PC that means click both
mouse buttons.

Try this:

Open a terminal (if one is not open), and type some text at the prompt. Anything will do

salkfjdhla

Now use the Left mouse button to highlight this text.

Next, in the same xterm window, click the Center mouse button—i.e. push both PC mouse buttons simultaneously .

This should Paste the text that you automatically copied when you highlighted the previous text.

9.3 Using Xfig

Now that you have an xfig window up and running, let’s start to play with it. It’s fairly intuitive I think—just remember
that some actions are done with the Center mouse button.

9.3.1 Drawing

• Make a circle: Click the Circle Drawing tool at the top left of the Drawing tools. Now, Left-click and drag
to adjust the size of the circle. When you have a circle of about 1-3 cm in radius, Left-click to fix the size and
attach the circle to your canvas.

260 Chapter 9. Scientific Drawings

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

• Make a Line: Now, click the Line Drawing Tool (the line segments–4th down on the right column). Left click
on the canvas; this starts a line. Move the mouse and Left click again. Each Left click gives the line a new
vertex. Now, Right-click. Did your line disappear? Right clicking, with the Line Drawing Tool, means Cancel .
Restart a line segment sequence as shown at the beginning of this paragraph. After a few vertices, Middle-click
(BOTH buttons together). This should attach the line to your canvas.

Ok. Do you see how it works? It’s pretty easy; you just have to get used to the tools.

• Try each of the Drawing Tools.

• What kind of Object does it create?

• Understand how it works—what do Right, Center, and Left mouse buttons do?

• What Attributes does it have? What do the different options do?

Now let’s do a simple exercise using the Edit Tools.

9.3.2 Editting

• Click the Delete Tool button: 7th up from the bottom on the left column in the Edit Tool Menu. A number of
little squares should appear on your drawing, and your cursor should become a “Skull and Crossbones”.

• Left-click on one of the items in your drawing. Did it disappear? It should have. That’s what the Delete tool
does!

• Now click the Move Tool button. Your curson should become a pointing hand.

• Left-Click on one of the little squares on one of the objects in your diagram. You should be able to Click-drag it
around your canvas, and leave it at a new location.

9.3.3 Saving and Exporting

Open xfig and make some simple figure using the techniques you learned above. Anything will do, even just a line or
circle.

Once you have a figure, there are two ways to store it on disk..

Save/Save As...

To Save your figure in Native Xfig Format (as a .fig file), you click File->Save on the upper left menu bar. This opens
the Save dialog box:

9.3. Using Xfig 261

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

The essential items are circled in red above:

• The filename. Without an extension, your file will be saved with the xfig extension: .fig.

• The directory in which your file will be saved: /home/jhetrick/ in the screenshot.

• The Save button.

This will save your figure in Xfig format, so that you can read it back into xfig and continue editing it. However, this
format is only readable by xfig.

I usually save my figures in this format and export them to an image format. That way, if I decide later to change the
figure, I can re-open the *.fig file and make changes. You can’t do that with the exported image file.

262 Chapter 9. Scientific Drawings

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Exporting to an image

When you have the figure in its final form, you are ready to Export it to an image file, suitable for inclusion in another
document–either a Latex or Word document, or perhaps an HTML page on the web.

To Export your figure to an image file:

Click File->Export

This brings up the Export dialog box:

Notice:

• The “Language” menu–this really means the image format: EPS, JPEG, TIFF, PDF, etc.

• The Output File. This is the name of the exported file. If you already saved your figure (as mycoolfiure.fig in this
case), then there will be a “Default File” with the same name and an extension corresponding to the Language
of file type you chose.

• Current Directory, where the image file will be saved.

If you Click on the “Language” dropdown, you can see all the possible export formats:

9.3. Using Xfig 263

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

264 Chapter 9. Scientific Drawings

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

I’ve highlighted some of the more popular: PDF, JPEG, and PNG. Note that each of these is a format that can be easily
included into a Latex document.

Once you have chosen your export format (JPEG shown below), you can see that the Default File name shows the
appropriate suffix, and you are ready to click the Export button at the bottom of the dialog box.

A Handy Tutorial

Below is a link to a nice tutorial I found on the web if you are interested in delving further into Xfig.

• Xfig Tutorial by Peter Hickocks

9.3. Using Xfig 265

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/pages/xfig/xfig-howto.pdf

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

9.4 Homework

Homework for Chapter 9 is here

266 Chapter 9. Scientific Drawings

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/hw9.html

CHAPTER

TEN

REMOTE LOGIN AND FILE TRANSFER

10.1 Remote Login and File Transfer

10.1.1 A Little History

The 1970’s

Before the days of Personal Computers (PCs), computers were giant room sized machines called Main Frames as we
discussed in the ‘Introduction‘_ to this course. These computers were large machines running in an isolated and
temperature controlled place (usually called The Machine Room) and users logged on to the Main Frame. These
computers supported many users, logged in simultaneously.

The early 1980’s

Then came the PC. With a personal computer, the programs and files, etc. were all physically located in the box on the
user’s desk, where everything is self contained. Typically, only one user would be logged on to the computer at any
time.

The mid 1980’s

About the same time as the rise of the PC, the Internet (but not The Web which uses the Internet) became an important
part of the worldwide cyberstructure allowing computers to transmit packets of data addressed to a unique computer
somewhere else on the internet. Still The Web as you know it know did not exist. In the late 1980’s we had three basic
forms of using the Internet:

• Email

• Telnet This is a way of logging into a remote computer, as if you were sitting at a terminal connected to that
computer. Once logged in, you got a shell prompt on that machice, just like you get when you open an xterm on
your computer. You could issue unix commands and move around the file tree from the prompt.

• FTP (File Transfer Protocol). This was a separate program from Telnet which allows users to transfer files
to/from a remote computer.

In the days before the World Wide Web (WWW), this was the way we got things from the internet. There
were archives of open files that one could access by using FTP protocol to login as “Anonymous” with password
“your@email.address”. Once in, you could browse and download files—usually through a 9600 baud modem...

1990

Then came the World Wide Web, a system that linked files on different computers through ” Browsers that could
interpret files written in “HyperText Markup Language” (HTML). These files could contain “Links” to files, or other
HTML pages. This system was developed at the European Particle Accelerator, CERN. Recently the CERN Courier,
the monthly news publication from CERN, published an article marking the 20th anniversary of the Web. It featured
this document:

267

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

which is a copy of Tim Berners-Lee’s original memo to his boss outlining an idea for a system of servers, browsers, and
interactions. Notice the handwritten note his boss wrote at the top: “Vague but exciting...”, scribbled by Berner-Lee’s
boss.

268 Chapter 10. Remote Login and File Transfer

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

The idea went on to transform the world and lead to The Information Age of global connectivity. The complete article
for the CERN Courier is here if you are interested in reading it. While we can now cruise the Web and find a truly
amazing amount of information in a variety of forms, there are still times when it is necessary to login to a remote
machine and perform tasks from a non- graphical (no mouse or menus) prompt.

10.2 Get Connected with SSH

In the scientific world you usually remote login to other computers because

• the other computer has special resources that are not available on your computer. For example, the remote ma-
chine might be one of those supercomputers you looked at in Homework 1. It is super-fast and has a ridiculously
large disk.

• your files are there. In this case you might use (S)FTP to get them

• Often certain computers at an institution or lab have certain software applications on them. One computer might
have data visualization packages, another might have the statistical software. Another may be a computing
cluster for running programs. Yet another could be the storage server connected to a large disk.

Thus we need to learn the basics of remote login.

10.2.1 SSH: Secure Shell

Telnet, which I mentioned above, is a program that you run at the command line of an xterm shell window. It opens
a connection to a remote machine which allows access via telnet, then presents the user a login prompt (asks for your
username and password) on the remote machine. If the user can provide the correct password, a shell prompt awaiting
commands was returned.

The problem is... Telnet transactions are sent over the internet as plain text, i.e. as simple ASCII characters. These
packets bounce from one router to the next to the next and so on, until they finally arrive at their destination. Anywhere
along the way, an unscrupulous person could record packets traveling through nearby routers and read all the data. It
is very simple to look for the characters ” Username: ” and ” Password: ” in the stream, then read the characters
following this (up to the RETURN). The hacker would then have the person’s username and password.

Note: In about 2001 I discovered a breach of Pacific’s network by finding a hacker logged into one of the machines
here. After killing his login and looking around a bit, I found that he had set up a program to log router traffic which
left a file which contained the usernames and passwords of all the people on the south campus who accessed our school
database via telnet on a router in the Psych building.

Because of this big flaw in Telnet, not many computers allow telnet access these days. The replacement for Telnet,
is Secure Shell (SSH). Basically SSH is the same as Telnet–offering the user a shell prompt on the remote machine–
however it encrypts all the data that is transmitted between the machines. Even if a hacker recorded the entire transmit-
ted session, it would only look like giberish. The transmission can only be decoded by public key decryption, which
is quite strong if the keys are sufficiently large.

10.2.2 Using SSH

First, we need a machine that we can ssh into.

I’ve made an account for us to use on physics-nix.stk.pacific.edu.

10.2. Get Connected with SSH 269

http://cerncourier.com/cws/article/cern/38707
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/hw1.html
http://en.wikipedia.org/wiki/Public-key_cryptography

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

The username (for all of us) is phystu

The password for this account is given under the Resources course tool menu item on the Sakai PHYS 27 site (look for
Resources on the left hand tool menu). Open the Resourses Folder and look for the document on the SSH Accounts.
The reason for putting this here is that I don’t want to post the password to this account on the internet as a webpage.
I only want those who have PHYS 27/193 access to Sakai to be able to view it.

Using what you learned above, ssh to physics-nix.stk.pacific.edu.

Remember that your USERNAME on this machine will be phystu (we will be sharing the account) and the domain
name is given above (physics-nix.stk.pacific.edu).

Also,

Warning: You must be on campus to login to physics-nix. If you live off campus (outside the Pacific firewall),
you will need to contact me about getting VPN (Virtual Private Network) access. Or you can just do the work of
this chapter and the next by bringing your laptop on campus.

Exercise

Open a terminal shell, and type:
ssh phystu@physics-nix.stk.pacific.edu

Once you are logged into physics-nix.stk.pacific.edu you will get a prompt that looks like this:

phystu@physics-nix[~]>

I’ve preloaded the .bashrc file for you.
Do a directory listing
ls
to see what files are there (not much).

10.2.3 Emacs on a remote machine

Now that you have a shell prompt on the remote machine (physics-nix), you can issue commands there.

For example, the which commmand tells you if a command or program is available, and the location of the program
file.

Type:

which gnuplot

to see the location of the gnuplot executable file on this machine.

270 Chapter 10. Remote Login and File Transfer

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Suppose we wanted to edit a file on physics-nix. You could type emacs, and in a little while an Emacs window will
pop up on your screen. The reason it takes a little while is that the full X-Windowed data is being sent through the
network. physics-nix must get information about your graphics capability, the location of other windows, the status of
your mouse, etc., then send the information for an Emacs window though the internet to the machine you are currently
working from (the laptop or desktop on which you are now working). AND–all this gets encrypted.

This is a fairly bulky process involving a lot of network traffic. Sometimes it’s necessary–say, if you are using gnuplot;
you have to be able to look at the graph.

However, if you can save on bandwidth, your connection to the remote computer will be faster.

This is why it’s useful to be able to use emacs in “Text Mode” as we discussed when we learned in the Emacs: GUI v.
Text.

You can start emacs in text mode on physics-nix by typing

emacs -nw

Remember this command? The -nw stands for “No Window”.

Now you can run programs and edit files on the remote machine. What more do you need!

You could be in a cyber cafe in Paris, ssh’ed into a computer here in the US, and–as long as you are familiar with
moving around in a shell at the command prompt–have pretty much complete access and control of the computer here
in the US.

In my research, I use supercomputers around the world, like Hopper shown here at NERSC

Once I am granted an account on one of these machines (usually by a grant writing procedure, where I get access for
a certain amount of time), I can login via ssh from anywhere, just as you have done in this tutorial.

I then use emacs to create and modify files, such as simulation programs which I then run on that particular computer,
making use of the fact that it is INCREDIBLY powerful and has a HUGE amount of disk space.

Once these programs have finished running, I can analyze the output on the supercomputer, or even better, reduce and
transfer the data file to my local computer for analysis here (more on file transfer shortly).

Exercise

Before you log out from physics-nix, use emacs to create a file called “YOURNAME_nix.txt”. You will need
this file below.
where YOURNAME is (duh), your name. In the file, put the text

This file was created by USERNAME on physics-nix.stk.pacific.edu.
Date: today's date
I'm feeling: --how are you feeling today?--

10.2. Get Connected with SSH 271

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch4/ch4sec2.html#gui-v-text
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch4/ch4sec2.html#gui-v-text
https://www.nersc.gov/users/computational-systems/hopper/

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

10.2.4 Getting Back Out

When you are finished with your work on the remote computer, you logout by typing:

logout

oddly enough.

Equivalently, you can type exit or even just: CTRL-d (this is my fave).

All of these do the same thing: exit your session on the remote machine and log you out.

Logout from physics-nix.stk.pacific.edu, if you haven’t already.

This should leave you at the prompt in your terminal shell on your laptop/computer.

The reason I set up your .bashrc file to display:

sci[~]>

in the propmt is so that you will know that you entering commands back on your local laptop. For the same reason, I
put phystu@physics-nix[~]> in the .bashrc file for user phystu on physics-nix. It helps keep track of which machine
you are logged into when typing commands at the prompt.

10.3 SFTP and SCP

Sometimes you don’t want a prompt on the remote machine to run commands„ but rather you need to get (or put)
some files from (or to) the remote machine.

That’s when you call on sftp: Secure File Transfer Protocol. The syntax is very much like ssh.

10.3.1 SFTP

SFTP stands for Secure File Transfer Protocol.

At the prompt on your local machine (your laptop, say), type:

sftp phystu@physics-nix.stk.pacific.edu

272 Chapter 10. Remote Login and File Transfer

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

In a short while, physics-nix.stk.pacific.edu will ask you for the password for the phystu account (this is the same
one as you just used to ssh to physics-nix above. Finally, you will get a prompt that looks like this:

sftp>

You can find all the commands that sftp accepts by typing ? .

sftp> ?
Available commands:
cd path Change remote directory to 'path'
lcd path Change local directory to 'path'
chgrp grp path Change group of file 'path' to 'grp'
chmod mode path Change permissions of file 'path' to 'mode'
chown own path Change owner of file 'path' to 'own'
help Display this help text
get remote-path [local-path] Download file
lls [ls-options [path]] Display local directory listing
ln oldpath newpath Symlink remote file
lmkdir path Create local directory
lpwd Print local working directory
ls [path] Display remote directory listing
lumask umask Set local umask to 'umask'
mkdir path Create remote directory
put local-path [remote-path] Upload file
pwd Display remote working directory
exit Quit sftp
quit Quit sftp
rename oldpath newpath Rename remote file
rmdir path Remove remote directory
rm path Delete remote file
symlink oldpath newpath Symlink remote file
version Show SFTP version
!command Execute 'command' in local shell
! Escape to local shell
? Synonym for help

You can intuit most of these. The most commonly used commands are:

• cd path change directory on the remote machine

• lcd path change directory on the local machine

• get filename download a file from the remote to local machine

• put filename upload a file from the local to remote machine

• mget filen* download many files (* matches any characters)

• mput filen* upload many files (* matches any characters)

• quit or exit exit sftp

10.3. SFTP and SCP 273

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Exercise

Make sure you have opened an sftp session on physics-nix as described above.
Now, at the sftp> prompt, type
get USERNAME_nix.txt
You should see something like this:

sftp> get jhetrick_nix.txt
Fetching /home/jhetrick/jhetrick_nix.txt to /jhetrick.txt
/home/jhetrick//jhetrick_nix.txt 100% 444 0.4KB/s 00:00

Now quit the SFTP session, by typing.... quit.

Once you have your sci[~]> prompt back, indicating you are in the shell on your local computer, do an ls to
see that you indeed downloaded the file USERNAME.txt from physics-nix to your laptop.
Is it there?
View the contents of the file (remember how?) and check that its contents say that it was created by you on
physics-nix.

This is how you get file to and from remote computers.

To upload files, you do pretty much the same thing, except that you use the put command.

Exercise

On your local computer (i.e. your laptop), create a file called “USERNAME_local.txt”. Add the text “This file
was created on my super-deluxe Dell-o-tron.” (or something similar that describes your laptop/computer) to the
file, so that you know that this was the locally created file.
Upload this file to physics-nix.

I’ll be able to see this file on physics-nix so I’ll be able to tell if you have done it correctly.

This is part of Homework 10.

274 Chapter 10. Remote Login and File Transfer

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch10/ch10sec1.html#sftp
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch3/ch3sec2.html#less-page-through-a-file
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/hw10.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

10.3.2 SCP

Another way to transfer files is to use Secure CP. This tool is a mashup of SFTP and the usual unix CP command.

Recall how we copy a file from one place to another, by using the cp command:

cp file1 file2
cp file1 dir/
cp file1 dir/newname

to:

• make a copy of file1 called file2, in the same directory

• make a copy of file1 in the directory dir/

• make a copy of file1 called newname in directory dir/

In general, the cp command takes the form:

cp source target

meaning that the first thing (the source) is copied to the second thing (the target).

SCP allows us to use essentially the same one-liner command, but include reference to files and directories on remote
machines. The syntax goes like this:

sci[]> scp file1 janedoe@remote.mach.ine:dir1/dir2/file2

This command will

• open a connection to the machine called remote.mach.ine and login as user janedoe and ask for her password
on the remote machine.

This is what is meant by the text: janedoe@remote.mach.ine:

• put a copy of file1 in the sub-subdirectory dir1/dir2 beneath janedoe’s HOME directory on the remote machine,
called file2.

Note: if your username on the local machine AND the remote machine is the same, you don’t have to include the
username (janedoe, in this example). You could just give the remote machine name. In that case, you would type scp
file1 remote.mach.ine: to put file1 in your HOME directory on remote.mach.ine).

10.3. SFTP and SCP 275

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch3/ch3sec2.html#the-cp-command

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Exercise

To try this out for yourself, open a terminal shell on your laptop, and make a test file (emacs, “blah blah”,
save-> mynametest.txt).
Now scp this file to physics-nix. If the file you just made is in the current directory, you would do this:
scp mynametest.txt phystu@physics-nix.serv.pacific.edu:
Rememeber the password for phystu on physics-nix; you’ll be asked for it.
This should put a copy of the file mynametest.txt, in the home directory of user: phystu, on the remote
machine: physics-nix.serv.pacific.edu.

Now, logon to physics-nix.serv.pacific.edu using ssh:

ssh phystu@physics-nix.serv.pacific.edu

At the prompt on physics-nix, do a directory listing and verify that the file mynametest.txt is there.

Edit it with emacs (remotely, using text-mode emacs as discussed above), and add a sentence to the end:

“This file was successfully copied to physics-nix with scp“

Now, logout from physics-nix (type exit, or CTRL-d). You should have the sci[~]> prompt back in your local
terminal shell.

Delete the local mynametest.txt file (rm mynametest.txt). We are going to grab back the copy we just put on
physics-nix.

Do an ls to verify it is gone.

Now, get a copy from physics-nix:

scp phystu@physics-nix.serv.pacific.edu:mynametest.txt .

Notice this time the source is on the remote machine, and the target location/name is just . . Remember, ., a single
period, means “here” in unix. It stands for “the current directory”.

This should prompt you for your password on the remote machine, then copy the requested file to the current directory
on the local machine.

276 Chapter 10. Remote Login and File Transfer

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

If you were successful, you should have a file on your local machine that has the added sentence: “This file was success-
fully copied to physics-nix with scp”. That’s how you know you have pulled the copy from physics-nix.serv.pacific.edu,
after you put it there in the first place.

10.3.3 What’s the difference between sftp and scp?

Basically, sftp and scp do the same thing–move files from one computer to another. However, sftp is a bigger program,
whereas scp is a oneliner that allows you to grab a single (or multiple) file(s), if you know where on the remote machine
they are. You have to give scp “the full path/name” information to the file in order to find it.

With sftp, you get an sftp> prompt. SFTP really gives you a “file transfer shell–an environment in which you have a
prompt and a number of commands that you can type, such as help, ls, cd .., etc. This sftp shell allows you to
move around within the sftp environment (on the remote machine). So, if you can’t remember where the file is located
on the remote machine, sftp would be the way to go. You can login to the remote machine, cd around, ls to view the
directory contents, and then grab the files you need with the get command.

10.4 Homework

If you did the above exercises, you are ready for Homework 10, which is here:

Homework 10.

10.4. Homework 277

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/hw10.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

278 Chapter 10. Remote Login and File Transfer

CHAPTER

ELEVEN

SYMBOLIC MATH AND NUMERICAL LINEAR ALGEBRA

11.1 Symbolic Math and Numerical Linear Algebra

Now that you know how to logon to the Physics department’s utility computer, physics-nix.stk.pacific.edu, you can
use some of its specialized software. Actually this machine is VERY old! There is a new replacement for it sitting in
a box beside it, but that will have to wait for time later in the summer to install. Nonetheless, you can get started using
the old machine. So far, we’ve learned about

• The Scientific Environment

• Unix

• Gnuplot

• Latex

• Xfig

• SSH/SFTP

The only time we got to do anything like real science was using gnuplot where we plotted some data, did some fits,
and made a prediction about the population.

Let’s return to tools for doing science and math.

11.1.1 Doing Symbolic Calculations (algebra and calculus) with Mathematica

Much of scientific computing is about manipulating numbers: computing them, graphing them, interpreting them ,
etc. But math is the language of science, and so it would be nice if we can also use the computer to do math.

Of course we can do math—and have. In our Gnuplot investigations we solved the equation 2x2 − 3x + 1 = x,
graphically . This however involved a numerical method, successively limiting the x range to find where the left and
right sides were equal. The solution was good to about 6 decimal places (since that’s the limit of our x-range accuracy
in those plots).

Also using Gnuplot, we can plot interesting mathematical functions, such as the ArcTangent tan−1(x) and the Bessel
function j1(x). However, what gnuplot does is generate tables of numbers to plot for these functions.

We can’t really do algebra, calculus, or differential equations with gnuplot—these require Symbolic Math Calcu-
lations, the manipulation of abstract variables, a, b, g and operations like d

dx . For this we use tools like

• Mathematica (Wolfram Inc.)

• Maple (Maplesoft Inc.)

279

http://www.wolfram.com/mathematica
http://www.maplesoft.com/products/maple

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Another tool you may have used or heard about is: Matlab. Matlab is a numerical linear algebra tool. We’ll talk about
it in the next section.

The two above are the leading packages (as of now) of the tools for symbolic math on the computer, and as you can see
they are commercial applications meaning they are not free. An enormous amount of research and work has gone into
creating software environments that can do math the way you do it in math class: manipulating variables according
to the rules of algebra, trigonometry, calculus, differential geometry, combinatorics, etc. Thus these packages are not
cheap: both Mathematica and Maple sell at about $1000 for the basic package (however there are student versions for
each at $100-150.

While my philosophy is strongly geared toward providing you with Free software, there is nothing in the Free realm
that compares to these systems. There is an open-source Python project called Sage, which is being developed. But it
is not as powerful as these other tools (yet).

We can, however, give you access to some of these commercial tools because the university has site licenses and these
packages are available on certain machines. For the moment, we will explore Mathematica. This was part of the
purpose of teaching you to login on remote machines. Now the university (and you!) can save money by putting
special software on certain machines and then giving students and faculty access to those machines. This is one of the
purposes of our machine: physics-nix.stk.pacific.edu.

Let’s play with Mathematica

We won’t be able to delve deeply into using Mathematica–for that Wolfram Inc. offers courses, online seminars,
trainers and consultants. However, once I give you access to Mathematica, one of the easiest ways for you to get
deeper into it is to Google “Mathematica Tutorial” or “Introduction to Mathematica” and look at the many (excellent)
things that exist on the Web.

My purpose here is to just wet your appetite by showing you how to get started, how to do a couple basic things, and
then give you pointers to more documentation.

First, you need to be logged onto physics-nix.stk.pacific.edu as user phystu. You remember how to do that, right? .

At the prompt, type:

phystu@physics-nix[~]> math

You should get the following response:

Mathematica 7.0 for Linux x86 (32-bit)
Copyright 1988-2009 Wolfram Research, Inc.

In[1]:=

The Mathematica prompt is In[1]:= and this indicates that it is waiting for input.

If you DO NOT get this response, but instead get :

280 Chapter 11. Symbolic Math and Numerical Linear Algebra

http://www.mathworks.com/products/matlab/
http://www.sagemath.org/

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

phystu@physics-nix[~]>math
Mathematica 9.0 for Linux x86 (32-bit)
Copyright 1988-2012 Wolfram Research, Inc.

/home/phystu/.Mathematica/Licensing/mathpass:2:
The Mathematica license you are using has expired.
Please contact Wolfram Research or an authorized
Mathematica distributor to extend your license and
obtain a new password.

/home/phystu/.Mathematica/Licensing/mathpass:3:
The Mathematica license you are using has expired.
Please contact Wolfram Research or an authorized
Mathematica distributor to extend your license and
obtain a new password.

/home/phystu/.Mathematica/Licensing/mathpass:4:
password file "/home/phystu/.Mathematica/Licensing/mathpass".

Invalid password.

/home/phystu/.Mathematica/Licensing/mathpass:5:
password file "/home/phystu/.Mathematica/Licensing/mathpass".

Invalid password.

Mathematica cannot find a valid password.

For automatic Web Activation enter your activation key
(enter return to skip Web Activation):

Just type CTRL-d to exit.

This indicates that someone else is using Mathematica on physics- nix at the moment.

I’ve been trying to save money by just using a 2-seat licencse for Mma.

If you get this response, logout by hitting CTRL-d , wait some time, log back in, and see if your colleague has finished
using Mathematica

If you are still having trouble getting a free session, email me and I’ll set up a schedule.

If you run into different problems, email me as usual.

Mma is a common abreviation for Mathematic and I will use it below.

Let’s assume now you have the Mma prompt, In[1]:=, waiting for you to tell it something.

Try the simplest thing: type 1+1 ENTER

11.1. Symbolic Math and Numerical Linear Algebra 281

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

In[1]:= 1+1

Out[1]= 2

In[2]:=

Mma responds to your input, by computing the sum of 1+1. Bet you knew that one...

Derivatives

Let’s try something more interesting. Most of you will have completed Differential Calculus (MATH 051 at Pacific).

I opened my freshman Calculus book and pulled out one of the problems I was assigned. Compute the following
derivative:

d

dx

(
sinx+ cosx
sinx− cosx

)

In Mma we would use the Derivative operation: D[...] like this. At the Mma prompt, In[2]:= (it might have another
number than 2 on your computer).

In[2]:= D[(Sin[x] + Cos[x])/(Sin[x] - Cos[x]), x]

Then type, ENTER.

Mma responds with:

2
Cos[x] - Sin[x] (Cos[x] + Sin[x])

Out[2]= ---------------- - -------------------
-Cos[x] + Sin[x] 2

(-Cos[x] + Sin[x])

In the In[2]:= command, do you see that the D (Derivative) operator acts on the function

(Sin[x]+Cos[x])/(Sin[x]-Cos[x]),

and takes the derivative with respect to x, which is the last argument to D[..., x]?

Let’s look closer at the Mma syntax.

• Mma functions, operators, etc. (almost) ALWAYS begin with Capital letters: D**[...], **Sin[x], Cos[Pi x/2], and
so forth.

282 Chapter 11. Symbolic Math and Numerical Linear Algebra

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

• Arguments to functions and operators are enclosed in square brackets: Sin[x**]**, Exp[x^2/a], and so on.

This is special to Mma. Gnuplot, and most programming languages, by contrast, use lower case functions
with parentheses like this: sin(x). So, it can sometimes be confusing when switching back and forth between
programs.

Just be aware: Mma uses CAPS and []’s

The answer given in Out[2]= is correct. Mma has applied the Chain Rule with the appropriate Trig derivatives, but it’s
not the simplest form for the result. For this, there is a handy function: Simplify[]

In[3]:= Simplify[%]

2
Out[3]= -------------

-1 + Sin[2 x]

Notice that I used the % (percent) here. The % symbol in Mma means “the result of the last command”.

Note that sometimes the Simplify command helps and sometimes not. But it’s worth a try.

Solving (non-linear) Equations

Let’s see what Mma does with the equation we solved using gnuplot: 2x2 − 3x+ 1 = x.

For this we use Mma‘s Solve[] function. We have to give it the equation we wish to solve.

Mma‘s syntax for an equation is:

2x^2 - 3x + 1 == x

Notice I’ve used the ^ (caret) to mean exponentiation of a power.

Also, the == in the above statement indicates a relation of equality between two things. This is how we tell Mma that
the thing above is an equation, as opposed to an assignment.

If we wrote 2x^2 -3x + 1 = x, with = instead of ==, we would be telling Mma to assign x (the RHS) to 2x^2 -3x +1
(the LHS), in the same way you assign a variable y the value 5, by typing y = 5.

Next we pass this equation to the Solve[] function, and tell it to solve the equation for the variable x.

In[7]:= Solve[2x^2 - 3x + 1 == x, x]

2 - Sqrt[2] 2 + Sqrt[2]
Out[7]= {{x -> -----------}, {x -> -----------}}

2 2

11.1. Symbolic Math and Numerical Linear Algebra 283

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Very good. This is a quadratic equation, there are two solutions, and there they are. You can check by hand if you
like.

Root Finding

How about another more interesting equation, say, the one from the end of Homework 5: using V0 = 50?

tan(2
√

2E) =

√
V0 − E
E

If we just plug it into the above syntax, we get this:

In[8]:= Solve[Tan[2Sqrt[2E]]==Sqrt[(50-E)/E], E]

General::ivar: E is not a valid variable.

Out[8]= Solve[False, E]

Oops! In Mma, E is a protected character (like Pi). It’s Euler’s number: E = e1.

Try this: Use x for E in the above equation:

In[9]:= Solve[Tan[2Sqrt[2x]]==Sqrt[(50-x)/x], x]

Solve::tdep: The equations appear to involve transcendental functions of the
variables in an essentially non-algebraic way.

Still... no joy. But definately an interesting reply from Mma.

Mma is saying that this equation is transcendental and can’t be solved in closed (algebraic or symbolic) form . Still
we can ask it to Numerically solve the equation–that is, put numbers in the equation for x, and change x until we get a
numerical answer that satisfies the equation to the accuracy we need. As long as there is only one variable, x, this will
work.

We do this with the function: FindRoot[eqn, {var, starting_guess }]

Recall that a Root of an expression is an x value where the expression = 0. However Mma is smart enough to know

that the x value that solves tan(2
√

2x) =
√

V0−x
x is a Root of the expression: tan(2

√
2x)−

√
V0−x
x = 0.

We have to give Mma a little help with an initial guess. Let’s start at x = 0.

In[12]:= FindRoot[Tan[2Sqrt[2x]]==Sqrt[(50-x)/x], {x,0}]

1
Power::infy: Infinite expression -- encountered.

0.

Duh. Should have seen that coming. The RHS is infinite at x=0. So, start with a small positive guess: 0.00001

284 Chapter 11. Symbolic Math and Numerical Linear Algebra

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/hw5.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

In[13]:= FindRoot[Tan[2Sqrt[2x]]==Sqrt[(50-x)/x], {x,0.00001}]

Out[13]= {x -> 0.279726}

Booyah!

This should be close to what you got using the graphical method (zero-ing in on the place where the two sides are
equal) with Gnuplot. My solutions using gnuplot are shown here.

The other solutions from Mma are:

In[15]:= FindRoot[Tan[2Sqrt[2x]]==Sqrt[(50-x)/x], {x,0.5}]
Out[15]= {x -> 2.5157}
In[17]:= FindRoot[Tan[2Sqrt[2x]]==Sqrt[(50-x)/x], {x,3}]
Out[17]= {x -> 6.97724}
In[19]:= FindRoot[Tan[2Sqrt[2x]]==Sqrt[(50-x)/x], {x,8}]
Out[19]= {x -> 13.6399}
In[22]:= FindRoot[Tan[2Sqrt[2x]]==Sqrt[(50-x)/x], {x,20}]
Out[22]= {x -> 22.4543}
In[23]:= FindRoot[Tan[2Sqrt[2x]]==Sqrt[(50-x)/x], {x,30}]
Out[23]= {x -> 33.309}
In[24]:= FindRoot[Tan[2Sqrt[2x]]==Sqrt[(50-x)/x], {x,45}]
Out[24]= {x -> 45.8083}

We get these by giving starting points near the expected answer, and we can find those expected answers by using
Gnuplot to look at graphs of the functions.

Compare the Mma results above with my graphical solutions from HW 5.:

State Energy
1 0.280
2 2.502
3 6.976
4 13.643
5 22.455
6 33.307
7 45.811

Integration

Before we leave Mma, let’s do some integrals!

Start with the simplest one:
∫
xdx

In[1]:= Integrate[x,x]

2
x

Out[1]= --
2

11.1. Symbolic Math and Numerical Linear Algebra 285

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/solnHW5.html
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/solnHW5.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Nice. It’s good to know things you learned in grade school are still true.

The syntax of the Integrate function in Mma is:

• Indefinate integrals: Integrate[integrand , variable] or

• Definate integrals: Integrate[integrand , { variable , lowerLimit, upperLimit}]

In the first case, like the trivial case above, we did an indefinate integral which returns a function (the anti-derivative).

The second version of the Integrate[] function is for a definate integral, when the integral has a lower and an upper
bound, and the answer is a number.

Indefinate Integrals

Here’s a more interesting integral: ∫
x2

(1 + x2)
3
2
dx

This one is a little more complicated, and I bet you don’t know the answer by looking at it.

Mma gives:

In[8]:= Integrate[x^2/(1 + x^2)^(3/2), x]

x
Out[8]= -(------------) + ArcSinh[x]

2
Sqrt[1 + x]

Now, that would have taken a little work on paper..

Definate Integrals

On to Definate Integrals.

What is this one:
∫ 1

0
xdx

In[2]:= Integrate[x, {x, 0, 1}]

1
Out[2]= -

2

OK, let’s be serious. Here’s another one from my freshman calc book:∫ ∞
0

dx

(1 + x)
√
x

286 Chapter 11. Symbolic Math and Numerical Linear Algebra

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

We code this in Mma as follows:

In[4]:= Integrate[1/((1+x)Sqrt[x]), {x, 0, Infinity}]

Out[4]= Pi

Notice a couple things here:

Unlike Gnuplot, where we MUST explicitly put the * operator in for multiplication, as in x*y, Mma understands our
usual algebraic expression: xy or x y (with just a space) as x “times” y.

Notice that the Mma code, with the extra ()’s

1/((1+x)Sqrt[x])

as we typed above, would be very different from this

1/(1+x)Sqrt[x].

without the extra ()’s.

The first version evaluates to

1/((1 + x)Sqrt[x]) ⇒ 1
(1 + x)

√
x

while the second, without the extra set of ()’s would be:

1/(1 + x)Sqrt[x] ⇒ 1
(1 + x)

√
x

Warning: Make sure you understand this suble difference!

Also, notice that we used one of the built in Mma constants above: Infintity. Mma also understands (Capital) Pi, as
shown below. ∫ √π

0

x sin(x)dx

In[6]:= Integrate[x Sin[x^2], {x, 0, Sqrt[Pi]}]

Out[6]= 1

I think you are getting the picture.

Have a look at this document

• Introduction to Mathematica (with emphasis on the Tricky points) by David Roberts

Then, if you want to learn more look at:

• Mathematica Tutorials at Wolfram.com

11.1. Symbolic Math and Numerical Linear Algebra 287

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/downloads/intromath.pdf
http://www.wolfram.com/learningcenter/tutorialcollection/

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Also, a very nice, free website is Wolfram Inc.’s Integrals.

Check it out! Now that you know Mma syntax for functions (Sin[], etc.), you enter almost any function whose integral
is known, and this site will return the answer to you.

That could come in handy, eh?

This gives you a taste of symbolic math on computers. I would love to go further and show you, for example, the Mma
packages for doing Riemann Tensor Calculus in General Relativity, but your head would explode. Hopefully, this taste
of Mma will get you started, at least enough for your freshman physics and math needs.

11.2 Linear Algebra

There is another commercial package for doing math which is very popular, particularly among engineers, that you
should know about: MATLAB

Matlab stands for “Matrix Laboratory”, which gives you some indication of its purpose. Linear Algebra is the
mathematics of matrices and vectors, but that’s almost the simplest way to think about it. It’s the mathematics of
systems of linear equations (which can be written in matrix form, no matter how many, and many other related topics.

In fact, we will be not be using Matlab, but rather a free “clone” with much of Matlab‘s functionality, called Octave.
More on that below.

Back to Linear Algebra.

Believe me, linear algebra is a FREEKING DEEP subject. It should be required of all physics and engineering students,
and included in PACS. Almost everything you have learned in advanced math has a linear algebra connection.

This is very useful for many things:

• Many data sets can be thought of as a long vector. Calculations on these data can be done by MATLAB. An
example might be Stock Market data over some period of time.

• Systems of linear equations. Many other problems, such as partial differential equations, statics problems, fluid
dynamics, etc. can be given a matrix/linear algebra form. See: Finite Element Methods

• Many things, like the set of all periodic functions f(x) = f(x+ L) can be represented as a set of vectors in an
infinite dimensional vector space. That’s Fourier Analysis...

• Signal Processing. MATLAB has many tools for signal analysis, Fourier transforms, audio and image processing
(after all an image is just a matrix of pixel values–see what I mean about most problems having a linear algebra
representation?).

• Representing rotations, tranlations (both from one language to another as well as the physics meaning: move-
ment from place to another in space. Actually, if you think about Heisenberg’s Matrix Formulation of Quantum
Mechanics, in fact Change in general can be represented by an infinite dimensional matrix in the space of all
possibilities...

• Representing symmetry.

288 Chapter 11. Symbolic Math and Numerical Linear Algebra

http://integrals.wolfram.com
http://www.mathworks.com/products/matlab/
http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/wiki/Heisenberg%27s_entryway_to_matrix_mechanics
http://en.wikipedia.org/wiki/Heisenberg%27s_entryway_to_matrix_mechanics

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

...just to name a few.

We are fortunately going to take baby steps into linear algebra.

Whereas Mathematica was a tool whose primary use is for symbolic (algebraic) calculations, MATLAB is fundamen-
tally numerical. That means that it manipulates matrices and vectors as tables and arrays of numbers (like [1, -1, 3]),
not as algebraic symbols (like a, b, g, and x) as Mathematica did.

11.2.1 Matrix Algebra

First, let’s make sure you remember what matrix × matrix, and matrix × vector multiplication is.

If you are rusty on multiplying matrices (the plural of matrix), have a look at the Wikipedia page on Matrix Multipli-
cation. Like many Wikipedia pages, it is rather dense. But it’s pretty complete.

Anothere place to brush up on your matrix × matrix multiplication is Kahn Academy’s page on matrix algebra.

Warning: Make sure you understand the basics of matrix algebra before going on.

In particular, you need to be able to understand the problems in this quick little quiz. You can check your answers
below.

If

M =

 2 −1 0
3 −2 4
−1 1 2


What is M2 =?

i.e., what is the matrix × matrix product?

M2 =

 2 −1 0
3 −2 4
−1 1 2

×
 2 −1 0

3 −2 4
−1 1 2

 =?

Go that one? Good.

11.2. Linear Algebra 289

http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Matrix_multiplication
https://www.khanacademy.org/math/algebra2/alg2-matrices/matrix-multiplication-alg2/v/multiplying-a-matrix-by-a-matrix
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch11/ch11sec2.html#answers-to-practice-quiz

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

What about this matrix × vector product?

We will use a single-column matrix for the vector ~v is

~v =

 2
1
−1


What is M× ~v?

(Also, we will usually leave the × symbol out)

M~v =

 2 −1 0
3 −2 4
−1 1 2

 2
1
−1

 =?

Check your answers here before going on.

11.2.2 A Linear System of Equations

Here’s a typical linear algebra problem. Let’s say you need to solve these three coupled linear equations for the
variables x, y, and z.

x +2y −z = 4
2x −2z = 1
x +y = −4

These are linear equations because the variables x, y, and z appear in linear form, i.e. raised to the 1st power, x1, y1, z1,
as opposed to quadratic x2, cubic y3, or other non-linear (6== 1) powers.

You could also write this in matrix form.

Let

A =

 1 +2 −1
2 0 −2
1 +1 0



~r =

 x
y
z


and

~b =

 4
1
−4



290 Chapter 11. Symbolic Math and Numerical Linear Algebra

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch11/ch11sec2.html#answers-to-practice-quiz

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Remembering the rules of matrix × vector multiplication.

We can write our three linear equations very succinctly as A~r = ~b.

A~r =

 1 +2 −1
2 0 −2
1 +1 0

 x
y
z

 =

 x +2y −z
2x −2z
x +y

 =

 4
1
−4

 = ~b

where A is the matrix on the left, ~r is the (column-matrix) vector of unknowns [x, y, z], and ~b is the vector on the
right side.

Let’s now define another (unknown) matrix: A−1 which will be the inverse of A.

If A was a normal scalar variable (like 5, or π), let’s call it a, then the inverse of a would be a−1 = 1
a . Then a−1a = 1

For matrices, given A, we want to find another matrix A−1, defined such that if you multiply A−1 × A you get
something like 1 (One).

In matrix algebra, 1 (One) is called The Identity Matrix. It is the matrix that you can multiply times ANY matrix M,
and get the same matrix M as the result.

That’s what 1 (One) does for scalar numbers: for any a, 1× a = a.

The Identity Matrix, I, looks like this (in 3-dimensions):

I =

 1 0 0
0 1 0
0 0 1


Try it yourself:

11.2. Linear Algebra 291

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Multiply

I×M =

 1 0 0
0 1 0
0 0 1

 2 −1 0
3 −2 4
−1 1 2

 =

 2 −1 0
3 −2 4
−1 1 2

 = M

Please check that this is true.

The Inverse of matrix A is another matrix, which we write as A−1, such that if you multiply A−1×A you get I, the
Identity matrix.

A−1A = I

Now, if we knew the inverse, A−1, of A, we could use this to find the vector of unknowns ~r in our original problem—
the linear set of equatoins we started with.

Because, if

A−1A = I

then, multiply both sides of the equation above, A~r = ~b, by A−1

A~r = ~b

A−1A~r = A−1~b

I~r = A−1~b

~r = A−1~b

Wow! All we have to do is find the matrix A−1 and we can use it to find our unknown vector ~r, and solve the set of
linear equations. The solution is just

~r = A−1~b

On to Octave.

11.2.3 A Taste of Octave

We will use a free “clone” of Matlab, called Octave. It doesn’t have all the fanciest features of Matlab–it actually uses
Gnuplot for its graphics, but it does have much of the numerical linear algrebra capability. Octave comes standard on
Fedora Scientific., so you can run it on your own computer; you don’t have to log on to another computer.

292 Chapter 11. Symbolic Math and Numerical Linear Algebra

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

To start Octave, simply open a terminal and type:

octave.

You should see this:

GNU Octave, version 3.0.3
Copyright (C) 2008 John W. Eaton and others.
This is free software; see the source code for copying conditions.
...

octave:1>

Once again, you get a prompt:

octave:1>

waiting for input.

At the octave:1> prompt, type:

octave:1> A = [1, 2, -1; 2, 0, -2; 1, 1, 0]

When you hit ENTER, octave responds with

A =

1 2 -1
2 0 -2
1 1 0

You have just entered the *matrix form of A.

Notice the octave syntax for matrices:

• elements in a row are separated by commas [1 , 2 , -1; 2 , 0...]

• rows are separated by semicolons; [1, 2, -1 ; 2, 0, -2 ; 1, 1, 0]

Next enter the ~b vector. ~b is a single-column matrix, with only one element per row, so each entry is separated by a
semicolon “;“

octave:2> b = [4; 1; -4]
b =

4
1
-4

11.2. Linear Algebra 293

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

Now, to find A−1, the *inverse of A, type

octave:3> Ainv = inv(A)
Ainv =

-0.50000 0.25000 1.00000
0.50000 -0.25000 -0.00000
-0.50000 -0.25000 1.00000

We have defined a new matrix named Ainv and called octave’s matrix inverse function: inv().

Octave uses the star * for matrix multiplication.

Let’s check that A−1A = I.

Mathematically, we are asking if

A−1A =

 −0.5 0.25 1.0
0.5 −0.25 0.0
−0.5 −0.25 1.0

 1 +2 −1
2 0 −2
1 +1 0

 = I ?

You can check this “by hand”, or use Octave.

At the octave:> prompt type

octave:4> Ainv * A
ans =

1 0 0
0 1 0
0 0 1

We have shown that indeed, Ainv = A−1.

Now let’s solve those coupled linear equations. Type:

294 Chapter 11. Symbolic Math and Numerical Linear Algebra

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch11/ch11sec2.html#a-linear-system-of-equations

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

octave:5> Ainv * b
ans =

-5.7500
1.7500
-6.2500

There you go:

The unknowns, x, y, and z are

~r =

 x
y
z

 = A−1~b =

 −0.5 0.25 1.0
0.5 −0.25 0.0
−0.5 −0.25 1.0

 4
1
−4

 =

 −5.75
1.75
−6.25


In other words, the solution of the original set of equations is x = −5.75

y = 1.75
z = −6.25


Pretty easy. You can verify that these solve the above equations.

x +2y −z = 4
2x −2z = 1
x +y = −4

Consider the last equation of the set:

x+ y = −4

Indeed: −5.75 + 1.75 = −4.

Probably this doesn’t seem like we did rocket science, but imagine if we had a system of 500 coupled linear equations!
It would be just as easy, except for typing in the matrix and vector, which you probably would program Octave to
construct the vector for you.

At least now, you have a little taste of what Octave can do.

11.3 Homework

Homework 11 is here

11.3. Homework 295

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch11/ch11sec2.html#a-linear-system-of-equations
http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/hw/hw11.html

PHYS 27 Scientific Computing Tutorial Documentation, Release 1

M2 = MM =

 2 −1 0
3 −2 4
−1 1 2

 2 −1 0
3 −2 4
−1 1 2

 =

 1 0 −4
−4 5 0
−1 1 8


And

M~v =

 2 −1 0
3 −2 4
−1 1 2

 2
1
−1

 =

 3
0
−3


Click here to jump back to the quiz

296 Chapter 11. Symbolic Math and Numerical Linear Algebra

http://dirac.physics.pacific.edu/phys/jhetrick/www/phys27/textbook/html/ch11/ch11sec2.html#a-taste-of-octave

	Introduction to Scientific Computing
	What is Scientific Computing
	The Scientific Computing Environment
	The OS and Unix
	The Scientific Software Stack
	Homework

	Installing your Scientific Computing Environment
	Overview
	Prepare to Install
	Install VirtualBox
	Creating a Virtual Machine (VM)
	Defining the VM
	Turn on Virtualization in your BIOS?
	Configuring the VM
	Attach the Fedora Scientific ISO Disk
	Installing Fedora Scientific on your VM
	Booting Linux from the DVD
	Install to Your Hard Drive
	Create Root and User Accounts
	Boot Linux from Your Hard Drive
	Installing '' Guest Additions '' on your VM
	First Look at Linux
	Prepare for Guest Additions
	Upgrade your Kernel
	Configuring the Look-and-Feel
	Shared Folders
	Terminal/Shell Startup Configuration: the .bashrc file
	Examine .bashrc
	Fixing the Shared Folders
	Fonts and Colors
	Homework

	Basic Unix Skills
	Moving Around in the Unix World
	Get Some Files
	The Unix File System
	The Directories . and ..
	Pathnames
	Unix commands for files and directories
	Understanding pathnames
	Command Summary
	Copy, Move, Delete, and Examine Unix Files
	Video for this section
	Copying Files and Directories
	Moving and Renaming Files and Directories
	Removing Files and Directories
	Manipulating the contents of files
	Searching the contents of a file
	Sort the contents of a file
	Command Summary
	Controlling Data Flow
	The Pipe: |
	Command Summary
	Homework

	The Text Editor
	The Text Editor
	Learning More About Emacs
	Intermediate Emacs
	Homework

	Scientific Visualization
	Scientific Visualization
	More fun with Gnuplot
	3-D Plots with Gnuplot
	Plotting Data from a File
	Homework

	Data Analysis
	User Defined Functions
	Fitting Functions to Data
	Fitting Data II
	Saving and Printing
	Homework
	A Worked Example: Theory meets Experiment

	Scientific Publication
	Scientific Publications
	Latex Document Environments and Layout
	Error Messages from Latex
	Homework

	Intermediate LaTeX
	LaTeX Error Messages
	Physics Department LaTeX Templates

	Scientific Drawings
	Using Xfig for Drawings
	Starting Xfig
	Using Xfig
	Homework

	Remote Login and File Transfer
	Remote Login and File Transfer
	Get Connected with SSH
	SFTP and SCP
	Homework

	Symbolic Math and Numerical Linear Algebra
	Symbolic Math and Numerical Linear Algebra
	Linear Algebra
	Homework

